Eutrophication in the Baltic Sea – causes, consequences and mitigation measures

Marianna Pastuszak

National Marine Fisheries Research Institute Department of Fisheries Oceanography and Marine Ecology Gdynia, Poland

Baltic catchment; schematic illustration of water circulation in the Baltic Sea

Annual riverine outflow ca. 500 km³ TN load – 638 000 tons (in 2006) TP load – 28 370 tons (in 2006)

99.7% of Polish territory ⇒ Baltic catchment
Poland - second largest water supplier 63 km³/yr
Vistula 34 km³/yr
Oder 16.7 km³/yr

Elken and Matthäus, 2006; Pastuszak, 2012; HELCOM, 2011

N, P sources in the Baltic Sea catchment; source apportionment of nitrogen and phosphorus losses into inland surface waters in Poland in 2000; percentage contribution of Baltic countries to waterborn loads of TN and TP in 2006

Nitrogen (N) cycle in soil

<u>N easily moves along the</u> <u>soil profile ⇒ substantial</u> <u>leaching</u>

≫N surplus

Geomorphological features

- Soil type
- Type of bedrock
- Land slope

Hydrologicalmeteorological conditions

Poland - 84% of area land slope < 3⁰ √</p>

High contribution of groundwater in N emission

Predomination of slow flow systems, with long transit time, favors high N retention

http://landscapeforlife.org/give_back/3c.php

Fotyma et al., 2012; Pastuszak et al., 2012a, b

Nitrogen species concentrations in the Vistula and Oder Rivers (own data – EU grants); water flows – data from IMWM

>Higher TN concentrations in the Oder River (on average by 0.9 mg/dm³)

Phosphorus (P) cycle in soil

Phosphorus species concentrations in the Vistula and Oder River (own data – EU grants)

Not overlapping patterns of concentrations

Pastuszak and Witek, 2012

Contribution of Baltic countries to riverine export of nitrogen and phosphorus to the Baltic Sea in 2000; land cover/use in the Baltic countries

Pastuszak, 2012; Pastuszak and Witek, 2012 Rekolainen et al., 1995; Hatfield and Follett, 2008

Observed changes – connection with eutrophication in the Baltic Sea

Global scale – climate change

manifesting in:

1

 Huge decline in frequency and strength of saline water inflows ⇒ strengthening oxygen deficits in bottom waters

- Anomalies in outflows of riverine waters

- Decline in S and increase in T of waters in the Baltic Sea ⇒ affecting e.g. biomass and species composition of zooplankton

Local scale – N, P, Si

₩

- In 1950-1988 – 17-fold and 8-fold increases in consumption of mineral nitrogen and phosphorus fertilizers in the Baltic Sea

- XX century - 4-fold increase in TN loads and i 8fold increase in TP loads discharged by rivers into the Baltic Sea

 XX century - 3- fold decrease in DSi loads discharged into the Baltic Sea ⇒ 3-fold decrease in DSi concentrations in the Baltic waters. Cause
 river eutrophication and damming

Numerous international studies prove that only ca. 50% of TN and only 30% of TP introduced into natural environment in the form of natural and mineral fertilizers is effectively utilized by plants, the rest becomes dispersed in natural environment and leads to various negative ecological consequences and/or threat to health.

Kowalkowski et al., 2012; Pastuszak et al., 2012; Sharpley, 1995; Howarth, 2008; Conley et al., 2008; Nausch et al., 1999

www.mir.gdynia.pl

HELCOM, 2006 - supplemented with new knowledge

Four-level food chain in the Baltic Sea; role of silicon in ecosystem functioning

Changes in Polish economy – impact on N, P emission into Polish rivers and the Baltic Sea

Transition period (1989-2014) -

- Economic crisis (agricultural sector, industry)

- Restructuring, privatization of State owned farms

- Tremendous improvement in infrastructure in agricultural sector

₩

Drop in N, P surplus

 Introduction of market economy in Poland adjustment processes in agricultural production

 Closure of obsolete factories and modernization of the remaining ones, and introduction of clean technologies

- Absorption of EU funds and much greater national funds for environment protection

Construction of ca. 2000 WWTPs

Poland meets most of its environmental targets and has decoupled a number of environmental pressures from economic growth www.mir.gdynia.pl

Implementation of EU Directives after accession of Poland to EU:

Nitrate Directive

Water Framework Directive

-Pollution Prevention and Control Directive

-European Marine Strategy Directive

-Urban Waste Water Directive

Realization of HELCOM agreements e.g. Baltic Sea Action Plan (BSAP), Country Allocated Reduction Targets (CART)

Kowalkowski et al., 2012; Pastuszak et al., 2012a,b; Pastuszak et al., 2014; Jadczyszyn and Rutkowska, 2012; HELCOM, 2011, 2013a.b

Annual source apportioned emission of N i P into the Vistula and Oder basins; average percentage contribution (1995-2008) of various pathways of N, P emission into the Vistula and Oder basins (model MONERIS)

Concentrations of total nitrogen (TN) and total phosphorus (TP) in the Vistula and Oder waters (lowermost monitoring stations)

Concentrations of nitrates (NO₃-N) and phosphates (DIP) in the Vistula and Oder waters (lowermost monitoring stations)

Nitrate concentrations in various European rivers at the lowermost monitoring stations

Normalization aims at removing the natural fluctuations in loads by variability in water discharge

Flow normalized loads

<u>1988-2013</u>

Vistula:

TN ~ 47 000 t (37%) ↓
N-NO3 31 039 t (43%) ↓
TP ~ 2 950 t (37%) ↓
P-PO4 2 500 t (57%) ↓

Oder:

TN 32 000 t (40%) \Downarrow N-NO3 17 498 t (37%) \Downarrow TP 5 100 t (61%) \Downarrow referred to 2013 P-PO4 ca. 1 800 t (79%) \Downarrow

Pastuszak and Witek, 2012; Pastuszak et al., 2012; Pastuszak, 2014

Reduction of flow normalized TN and TP loads discharged by the Vistula, Oder and the Pomeranian rivers during the transition period (1988-2013); retention of TN, TP in the Oder estuary - taken into account						
Specification	Reduction of TN load [tons]	Reduction of TP load [tons]	Load reduction is estimated by comparing the present loads with the highest ones on the turn of the 1980s and			
Vistula basin; transition period (1988-2013); flow normalized loads (Pastuszak et al., 2012; unpublished data)	47 000 (by 37%)	2 950 (by 37%)				
Ode basin; transition period (1988-2013); flow normalized loads (Pastuszak et al., 2012; unpublished data)	32 000 (by 40%)	5 100 (by 61%) referred to year 2013				
Pomeranian rivers (estimated for average normalized N, P loads in 2000-2013 r., at the assumption that average Pomeranian rivers loads constitute 10% of average Vistula+Oder TN load, and 9% of average TP Vistula+Oder TP load discharge in the same time period and at assumed average 40% reduction of TN load and 54% reduction of TP load	2 850	216	N, P retention in the Oder estuary has never been taken into consideration by HELCOM			
(Pastuszak and Witek, 2012a) Oder estuary – reduction estimated based on average Oder TN and TP loads for the years 2000-2013 at 45% retention of TN and 37% retention of TP in the estuary (Pastuszak et al., 2005)	25 000	1 150				
Overall reduction of TN and TP loads discharged by Polish rivers as referred to max. loads observed on the turn of the 1980s and the 1990s	106 850	9 416				

BSAP and CART - parameters taken into consideration in order to restore good ecological status of marine environment by 2021

www.mir.gdynia.pl

- Nutrient concentrations close to natural,
- Transparent water,
- Natural blooms of marine algae,
- Natural distribution and occurrence of submerged plants and animals,
- Natural level of oxygen dissolved in water.

BSAP 2007 (tons yr ⁻¹)	Ministers CART 2013 N (tons yr ⁻¹)	BSAP 2007 P (tons yr ⁻¹)	Ministers CART 2013 P (tons yr ⁻¹)
17,210	2,890	16	38
5,620	7,670	240	170
62,400	(43,610)	8,760	7,480
11,750	8,970	880	1,470
2,560	1,670	300	220
900	1,800	220	320
6,970	10,380	2,500	3,790
1,200	3,030	150	356
20,780	9,240	290	530
133,170	89,260	15,016	14,374
	BSAP 2007 (tons yr ⁻¹) 17,210 5,620 62,400 11,750 2,560 900 6,970 1,200 20,780 133,170	BSAP 2007 (tons yr ⁻¹) Ministers CART 2013 N (tons yr ⁻¹) 17,210 2,890 17,210 2,890 5,620 7,670 62,400 43,610 11,750 8,970 2,560 1,670 900 1,800 6,970 10,380 1,200 3,030 20,780 9,240 133,170 89,260	BSAP 2007 (tons yr ¹) Ministers CART 2013 N (tons yr ¹) BSAP 2007 P (tons yr ¹) 17,210 2,890 16 5,620 7,670 240 62,400 43,610 8,760 11,750 8,970 880 2,560 1,670 300 900 1,800 220 6,970 10,380 2,500 1,200 3,030 150 20,780 9,240 290 133,170 89,260 15,016

Reference HELCOM period – average loads from the period 1997-2003 but not the highest N, P emission to the Baltic Sea on the turn of the 1980s and 1990s

Polish contribution to nutrient load reduction (CART):

- N ca. 49%
- P ca 52%

Polish contribution to overall nutrient riverine loads:

Flow normalized loads of nitrogen and phosphorus - methodological requirements

Load = nutrient concentration x water outflow \Rightarrow river catchment approach is essential

Methodologies of TN, TP load normalization and trend line calculation, elaborated by: Grimvall, Hussian, Libiseller, Stålnacke, strongly require:

- River catchment approach; normalization must be based on average monthly nutrient concentration (nitrates, nitrites, ammonium, TN, phosphates, TP) and monthly water outflows \Rightarrow monthly values \Rightarrow aggregated to annual values \Rightarrow annual values undergo normalization;

- Long-term data are indispensable for normalization and calculation of trend lines;

- Any selection of sub-periods and calculation of trend lines for sub-periods is wrong and must be rejected

HELCOM EUROHARP methodology of TN, TP load normalization is based on annual nutrient concentrations and annual water flows

Vistula and Oder load normalization based on Grimvall, Hussian, Libiseller, Stålnacke method, and on \Rightarrow (i) monthly concentrations and monthly water outflows, (ii) annual concentrations and annual water outflows \Rightarrow did not generate a systematic error, but significant random differences in normalized loads calculated for these two separate data bases and for the period 1997-2003 (HELCOM reference period).

Differences in TN \Rightarrow from + 15 000 tons/yr to ca. – 46 000 tons/year (overall scatter range ca. 61 000 tons/yr – well above Polish allocation of TN load reduction).

Differences in TP \Rightarrow from ca. + 1 500 tons/yr to ca. -1 900 tons/yr (overall scatter range ca. 3 400 tons/yr – ca. 50% of Polish allocation of TP load reduction). This finding indicates that HELCOM approach is erroneous.

HELCOM, 2011; Stålnacke and Grimvall, 2001; Grimvall and Stålnacke, 1996, 2001; Libiseller and Grimvall, 2002; Grimvall et al., 2000; Grimvall et al., submitted for publication; Hussian et al., 2004; Pastuszak, 2014

TN normalized HELCOM 1997-2003 (PLC-5) - 187 693 t - average difference 16 649 t

TN and TP concentrations in the Vistula and Oder at theoretical CART introduction

Present concentrations of TN and TP in the Vistula and Oder Rivers not only meet, but are well below the WFD environmental targets set up for the river type 21

WFD and its standards are obligatory for every EU country and these standards, including environmental targets, as superior to HELCOM assumptions, must be respected by HELCOM

www.mir.gdynia.pl et al., 2012; Pastuszak et al., 2012a,b; Pastuszak, 2014

Conclusions:

1) Understanding of eutrophication problem in the Baltic Sea requires a holistic approach which takes into account all the driving forces (local and global) having impact on the ecosystem functioning (changes in N, P, Si loads and N:P:Si ratio, climate change with its consequences)

2) Over the period 1988-2013 flow normalized loads discharged by the Vistula declined by: TN ~ 47 000 t (37%), TP 2 950 t (37%); in Oder - TN by 32 000 t (40%), TP by 5 100 t (61%). With nutrient retention in the Oder estuary and contribution of other rivers -Poland reduced riverine loads of TN by ca. 107 000 t and TP - by ca. 9 000 t

3) Over the last decades, Polish contribution to overall riverine TN discharges \Rightarrow ca. 25%;

TP discharges \Rightarrow 36.5%

In the light of these facts – it is not clear why Poland is responsible for ca. 50% of overall HELCOM CART reduction of TN, TP loads reaching the Baltic Sea

4) Simple calculations of target TN, TP concentrations in the Vistula and Oder show that Polish allocation of N, P load reduction (CART) is irrational, particularly in the case of P. TP target concentrations on the level of 0.07 – 0.08 mg dm⁻³ are not achievable as they may be close to natural background. Such low TP concentrations are not found in the world large rivers, draining densely populated and agriculturally active catchments

Conclusions:

5) Present concentrations of TN and TP in the Vistula and Oder Rivers are well below the WFD environmental targets set up for the river type 21

WFD and its standards are obligatory for every EU country and these standards, including environmental targets, as superior to HELCOM assumptions, must be respected by HELCOM. Goods and services of one ecosystem cannot destroy goods and services of the other ecosystem

- 6) Irrational HELCOM CART load reduction may result from different methodology in load calculations. According to international standards (strengthened with common sense) flow normalization must be based on monthly nutrient concentrations and monthly water flows, but not on annual TN, TP concentrations and annual water flows
- 7) Preliminary load normalization, based on monthly and on annual data for the Vistula and Oder, shows an overall scatter range of ca. 61 000 tonsTN/yr, which is well above Polish allocation of N load reduction, and overall scatter range 3 400 tonsTP/yr, which constitutes ca. 50% of Polish allocation of P load reduction
- 8) All questions and errors require HELCOM explanation and most probably renegotiation of allocation of N and P load reduction (CART)

