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Abstract

An analytical approach was used to model the wave-induced set-up and flow
through simple shoal geometry when water depth is a linear function of the distance.
Two different approaches were applied to parameterize the energy dissipation due
to wave breaking. The resulting set-up height and flow velocity were determined
and their dependence on the geometry of the shoal and offshore forcing was
demonstrated. The extension of the solution to a more complicated bathymetry
and verification against the experimental data will be given in the second part of
the paper.

1. Introduction

Wave motion is one of the most important dynamic factors determin-
ing the hydrodynamics, morphology and biological variability of shallow,
submerged coral reefs. Submerged shoals can be found along many ocean
coasts. In Europe, such shoals are present along Norwegian, Swedish and
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Greek coasts. The water depth at the shoal top is usually very small, but it
increases rapidly out of shoal (Lie & Torum 1991). In the tropical regions
the most important forms of submerged shoals are coral reefs. Such reefs
are common throughout the Pacific, Indian and Atlantic Oceans in the form
of fringing reefs surrounding islands, barrier reefs or separate atolls (Veron
1986, Massel 1999).

Shoals and fringing coral reefs act in a similar way to offshore break-
waters and protect shallow lagoonal areas from the full force of oceanic
waves. Waves which propagate over the reef slope and are transformed on
the shoal or reef platform impose forces on man-made structures and on the
organisms inhabiting these areas. In general, there are three processes which
dominate the hydrodynamics of shoals and reefs, namely: wave shoaling
and breaking, wave set-up and wave-induced flow. In particular, many
experimental studies (see for example Hearn & Parker (1988), Wolanski
et al. (1993), Gourlay (1994, 1996), Hardy & Young (1996), Kraines et al.
(1998), and Massel & Brinkman (1999)) have shown that currents induced
by wave breaking and pumping over the shoal top exert a significant impact
on the circulation and flushing of the lagoon behind the shoal or coral
reef. The continual outflow of water from the lagoon, independently of tidal
phase, would indicate that wave pumping is an even more important process
than the periodic, tidally driven circulation in reef flushing.

Wave breaking and wave set-up over coral reefs and shoals, recently
reported by Massel (1993) and Massel & Gourlay (2000), have been modelled
using the extended refraction-diffraction equation for surface waves and the
radiation stress concept. However, a solution of this type is valid only for
fringing reefs and shoals bounded by coasts not permitting flow through
shoals. In such a case, the gradient of the set-up is balanced through the
surf zone by the gradient of the radiation stress. For shoals and offshore reefs
with a lagoon behind them a wave driven current is generated. To account
for this current, a more complete theoretical treatment is required, which
incorporates wave breaking, set-up and flow generation.

In this paper, which can be considered as the first part of a more
extensive paper, we discuss the set-up and wave-driven flow over an idealized
elongated shoal, when the bottom profile can be approximated by the
set of linear functions of the distance. Such simplified shoal geometry
permits an analytical solution which, however, includes all the basic physical
mechanisms of these phenomena. Moreover, this solution provides the
opportunity to detect the influence of the particular factors on the final
results. The proposed solution is similar to the procedure proposed by
Symonds et al. (1995), but has been substantially extended. In particular,
in this paper the more complex shape of the offshore shoal is considered.
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Instead of the simple similarity model of breaking (the breaking wave height
is proportional to the water depth) used by Symonds et al. (1995), the
more sophisticated model by Dally et al. (1985) is applied and the wave
parameters at the shoal are related to the incident wave parameters in deep
water.

This paper is organized as follows. Firstly, the governing equations of
the problem and basic assumptions of the model are formulated. Secondly,
the solutions are given for the particular regions of the shoal. Thirdly,
the matching conditions are explored and the necessary coefficients of the
solution are found. Fourthly, the numerical examples are discussed, and
finally, in section six, the major conclusions are formulated. The extension of
the solution to a more complicated bathymetry and the verification against
the experimental data will be given in the second part of the paper, which
is in preparation. In particular, the experimental data (Massel & Brinkman,
1999) collected during the field experiment at the Ningaloo Reef (Western
Australia) will be used.

2. Governing equations

Consider an elongated offshore shoal or coral reef of simplified cross-sec-
tion as shown in Fig. 1. Let the origin of a rectangular two-dimensional
coordinate system (O,x, z) be taken in the mean free surface of the fluid
and the axes be chosen so that the x – coordinate is horizontal and the z
– coordinate is vertical and increasing upwards. In the front of the shoal and
behind it the water depths are constant and equal to h0 and hb, respectively.
A plane regular wave train of height H0 and frequency ω arrives normal
to the shoal axis; thus, the problem can be treated as two-dimensional.
It is assumed that even at low tide, the shoal top is not exposed and is
always covered by water. A wave approaching the shoal transforms over the
slope and breaks, inducing set-up of the mean water level and flow over the
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Fig. 1. Diagrammatic shoal defining the parameters used in the theoretical model
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shoal top. Let us assume for simplicity that the wave motion is stationary.
Moreover, the term U dUdx is treated as negligibly small when compared with
other terms in the momentum equation. As the water depth above the
shoal top is small, the water velocity may be represented by its mean value.
Therefore, the resulting system of the governing equations can be written
as follows (Massel 1989):

d [U(x)(h(x) + ζ̄(x))]
dx

= 0, (1)

0 = −gdζ̄(x)
dx
− 1

ρ[h(x) + ζ̄(x)]
dSxx(x)

dx
− τb(x)

ρ[h(x) + ζ̄(x)]
, (2)

where h(x) is the initial water depth changing in the x – direction, ζ̄(x)
is the wave-driven set-up, Sxx(x) is the component of the radiation stress
tensor, τb(x) is the bottom friction, ρ is the water density, and U(x) is the
depth-integrated velocity, i.e.

U(x) =
1

h(x) + ζ̄(x)

∫ ζ(x)
−h(x)

u(x, z)dz. (3)

To simplify the solution of eqs. (1) and (2), the linear friction law at the sea
bottom is applied, i.e.

τb(x) =
1
2
cfρ | uw | U(x), (4)

in which uw is the wave orbital velocity at the sea bottom and the friction
factor cf has a value from 0.1 to 0.2 for the coral reefs colonized by various
types of corals (Nelson 1996), and is of the order 0.01 for sandy bottoms
(Longuet-Higgins 1970).

Substituting eq. (4) into eq. (2) we rewrite it in the form demonstrating
the partition of the momentum induced by the radiation stress gradient
between the pressure gradient and cross-shoal flow

[h(x) + ζ̄(x)]
dζ̄(x)
dx

+
1
2g

cf | uw | U(x) = −
1
ρg

dSxx(x)
dx

. (5)

Prior to finding an analytical solution to the problem, the following
assumptions are made:

• the wave set-up is much smaller than the local water depth, so
h(x) + ζ̄(x) ≈ h(x). This assumption is justified by the fact that even
in the case of waves propagating over a sloping beach when no flow
is permitted, the maximum set-up is only a small portion of the wave
height at the breaking point. In the case of the shoal in question with
permitted flow, the set-up is even smaller. Eq. (5) therefore becomes

h(x)
dζ̄(x)
dx

+
1
2g

cf | uw | U(x) = −
1
ρg

dSxx(x)
dx

, (6)
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• the solution should allow sea level to return to a still water level at
a sufficient distance either side of the shoal or reef. Thus, the set-up
should vanish at some distances x = −x0 and x = xl, i.e.

ζ̄(x) = 0 at x = −x0 (7)

and

ζ̄(x) = 0 at x = xl, (8)

• a characteristic value of the bottom-wave induced orbital velocity was
assumed for simplicity to be constant and equal to the average velocity
at the breaking point (x = −xbr) and shoal edge (x = 0), i.e.

| uw |=
1
2
[u(x = −xbr) + u(x = 0)] . (9)

In each case, the velocity is calculated using a linear wave theory:

u(x) =
gkH

2ω
1

cosh(kh)
, (10)

• seaward of the surf zone we ignore the wave shoaling and assume that
the gradient of the radiation stress is zero (see Regions I and II in
Fig. 1).

Taking into account the above assumptions, the combination of eqs. (1) and
(6) gives the basic equation for the set-up ζ̄ in the form

d2ζ̄(x)
dx2

+R(x)
dζ̄(x)
dx

+Q(x) = 0, (11)

in which

R(x) =
2

h(x)
dh(x)
dx

, (12)

and

Q(x) = − 1
h(x)

(
dF (x)
dx

+
F (x)
h(x)

dh(x)
dx

)
, (13)

F (x) = − 1
ρg

dSxx
dx

. (14)

For a given set-up value, the velocity U(x) can be found from eq. (6) in the
form

U(x) =
F (x)
r∗
− h(x)

r∗

dζ̄(x)
dx

, (15)

in which

r∗ =
cf | uw |

2g
. (16)

Eq. (11) indicates that the set-up ζ(x) does not depend on the friction
coefficient r∗. This is because the linear friction law is used in the momentum
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balance equation (6). However, the current velocity U(x) is affected by the
r∗ value (see eq. (15)).

3. Solution of eq. (11)

The solution of eq. (11) may be constructed from the particular solutions
in each region of the fluid domain. Then the solutions are matched using
the conditions which provide continuity of set-up and velocity at the
cross-sections x = −xf , x = −xbr, x = 0, x = xt and x = xb.

Region I – constant water depth area in front of the shoal
(−x0 < x < −xf , z = −h0)

In the absence of wave breaking and bottom friction, the radiation stress
gradient dSxxdx vanishes. Therefore, F (x) = Q(x) = 0 and eq. (11) takes the
form

d2ζ̄(x)
dx2

= 0, (17)

with the solution

ζ̄(x) = C1 + C2(x+ x0) and U(x) = −C2 h0
r∗

. (18)

Region II – seawards breaking line (−xf < x < −xbr, −h0 < z < hbr)

The radiation stress gradient dSxxdx is negligibly small in this Region.
Thus, assuming that F (x) = 0 and Q(x) = 0, we get from eq. (11)

d2ζ̄(x)
dx2

− 2m
h(x)

dζ̄(x)
dx

= 0, (19)

where h(x) = ht −mx and m is the seaward bottom slope of the shoal. The
solution of eq. (19) becomes

ζ̄(x) =
−C3

ht −mx
+ C4 and U =

mC3

r∗ (ht −mx)
. (20)

Region III – surf zone (−xbr < x < 0, −hbr < z < 0)

We assume that at water depth hbr the wave starts to break. In
order to determine the breaking point and water depth at breaking, we
first parameterize the breaking wave height using a formula proposed by
Singamsetti and Wind (1980):

Hbr = 0.575m0.031
(
H∞
L∞

)−0.254
H∞, (21)
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in which L∞ is the deep water wave length, i.e. L∞ = 2πg
ω2

. For the

non-dimensional wave height
(
H
h

)
br
we have(

H

h

)
br
= 0.937m0.155

(
H∞
L∞

)−0.130
. (22)

Combining eqs. (21) and (22) we get

hbr = 0.614m−0.124
(
H∞
L∞

)−0.124
H∞, (23)

and

xbr = −
hbr − ht

m
. (24)

As the incident wave parameters are given for the water depth h0, we have
to estimate the deep water wave height H∞ and the wavelength L∞ using
the reversed refraction approach. Thus, we have (Massel 1989)

H∞ =

√
Cg0
Cg∞

H0, (25)

where Cg0 and Cg∞ are the group velocities at the water depth h0 and in
the deep sea (h =∞), respectively, i.e.

Cg∞ =
1
2
g

ω
(26)

and

Cg0 =
1
2

(
1 +

2k0h0
sinh(2k0h0)

)√
g

k0
tanh(k0h0), (27)

in which the wave number k0 is a solution of the dispersion relation

ω =
√
gk0 tanh(k0h0). (28)

Depending on the energy of the incident waves and the bottom slope, wave
breaking can be restricted to Region III, or it can continue in Region IV.
To find the corresponding set-up value in Region III we first determine the
radiation stress Sxx, assuming shallow water and a normal wave approach.
Thus, we have (Massel 1989)

Sxx =
3
16

ρgH2(x). (29)

In the literature there are a few procedures available for modelling the
variation of wave height H(x) over coastal slopes (for more details, see
for example Massel 1996a). For our purpose we apply the intuitive model
developed by Dally et al. (1985) in which a wave attenuates over the uniform
slope as follows:

H2(x) =

[(
h(x)
hbr

)β
(1 + α)− α

(
h(x)
hbr

)2]
H2
br, (30)
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in which

α =
KΓ2

3

m
(
5
2 −

K
m

)(Hbr
hbr

)−2
and β =

K

m
− 1
2
, (31)

in which the water depth h(x) = ht −mx, K is a dimensionless decay
coefficient and Γ3 is a dimensionless stable wave coefficient for a sloping
bottom. The coefficients K and Γ3 control the attenuation of wave energy
until a stable wave height (H ≈ Γ3 h(x)) is attained. According to Dally
et al. (1985), the value of K appears somewhere between 0.100 and 0.275,
and for Γ3, the range of applicability is from about 0.35 to 0.50. However,
these estimates are proposed for shoal slopes of the range from 1/80 to 1/30.
For steeper slopes, the values of K and Γ3 are still not known.

Using eq. (30) we get the following solution of the basic equation
(eq. (11))

ζ̄(x) =
C5

mh(x)
− A

m2β(β − 1)
[h(x)]β−1 +

B

2m
x+ C6, (32)

and for velocity U(x) we obtain

U(x) =
1
r∗

3mHbr
16

(
Hbr
hbr

)[
β(1 + α)

(
h(x)
hbr

)β−1
− 2α

(
h(x)
hbr

)]

− h(x)
r∗

[
C5[h(x)]

−2 +
A

mβ
[h(x)]β−2 +

B

2m

]
, (33)

in which

A =
3m2

16

(
Hbr
hbr

)2β2(1 + α)

hβ−2br
, (34)

B =
−3m2

4

(
Hbr
hbr

)2
α. (35)

Eq. (32) indicates that this solution is not valid for β = 0 (K = m2 ) and
β = 1(K = 3m

2 ). However, after the reformulation of the above equations, it
can be found that for β = 0, the solution of eq. (11) becomes

ζ̄(x) =
C5

mh(x)
+

B

2m
x+ C6, (36)

and

U(x) = − 1
r∗

3mα

8

(
Hbr
hbr

)(
h(x)
hbr

)
Hbr −

h(x)
r∗

[
C5

[h(x)]2
+

B

2m

]
. (37)

Similarly, when β = 1, we obtain

ζ̄(x) =
C5

mh(x)
− A

m2 ln [h(x)] +
B

2m
x+ C6, (38)
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and

U(x) =
1
r∗

3mHbr
16

(
Hbr
hbr

)[
(1 + α)− 2α

(
h(x)
hbr

)]

− h(x)
r∗

[
C5

[h(x)]2
+

A

mh(x)
+

B

2m

]
. (39)

The case when Km = 5
2(α =∞) requires a special analysis which will not be

given here.
It should be noted that when α = −1, eq. (30) reverts to the common

similarity model when

H(x) =
(
Hbr
hbr

)
h(x) = γh(x), (40)

where γ is the breaking factor. After substituting α = −1 into eqs. (32) and
(33), we get

ζ̄(x) =
C5

mh(x)
+

B

2m
x+ C6 and U(x) = − C5

r∗h(x)
. (41)

Region IV – shoal top (0 < x < xt, z = −ht)

To find the set-up value over the shoal top, we consider two scenarios.
In the first we assume that the breaking process is totally confined within
Region III. Thus, at the edge (x = 0), the wave is stable and its height
is smaller than the critical value corresponding to the constant water
depth, i.e. H(0) < Γ4ht, where Γ4 is a dimensionless stable wave height
coefficient for ht = const. To estimate the maximum non-breaking wave
height in Region IV, we use the results of the extended experimental data
summarized by Nelson (1994) and Massel (1996b). These results suggest
that the dimensionless stable wave coefficient Γ4 can be expressed as follows:

Γ4 =



√
1 + 0.01504h−2.5∗ − 1

0.1654h−1.25∗



2

, (42)

in which

h∗ =
ht
gT 2 . (43)

In the second scenario, the wave breaking process continues in Region IV,
over the shoal top as the wave height H(0) > Γ4ht. Therefore, the wave
height is still decreasing from its initial value H(0) until a stable condition
is reached at some distance from the shoal edge.

Let us consider first the case when H(0) > Γ4ht, and the gradient of the
wave height and radiation stress are not zero. For consistency we represent
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the variation of the wave height H(x) over the constant water depth by the
Dally et al. (1985) model also, i.e.

H2(x) =

{[((
H(0)
ht

)2
− Γ2

4

)
exp
(
−K x

ht

)]
+ Γ2

4

}
h2t . (44)

The corresponding solution of eq. (11) becomes

ζ̄(x) = C7x−M exp
(
−K x

ht

)
+ C8 and U(x) = −C7ht

r∗
, (45)

where

M =
3
16

Ght, (46)

and

G =
(
H(0)
ht

)2
− Γ2

4. (47)

For a stable regime, when H(0) < Γht, waves do not break (K = 0).
Therefore, for a constant water depth, the radiation stress gradient vanishes,
i.e. F = 0 and eq. (11) has the solution

ζ̄(x) = C7 x+ C8 and U = −C7 ht
r∗

. (48)

Region V – shoreward slope of shoal (xt < x < xb, −hb < z < −ht)

Similarly to Region II, eq. (11) becomes

d2ζ̄

dx2
+

2m1

h(x)
dζ̄

dx
= 0, (49)

in which h(x) = ht +m1(x− xt) and m1 is the slope of the backward slope
of the shoal. The solution of eq. (49) is

ζ̄(x) =
−C9

[ht +m1(x− xt)]
+ C10 and U(x) =

−m1C9

r∗[ht +m1(x− xt)]
. (50)

Region VI – lagoon behind shoal (xb < x < xl, z = −hb)

The water depth in the lagoon is assumed constant. Therefore, no
gradient of the radiation stress Sxx exists. Thus, F = dFdx = 0 and the
solution of eq. (11) becomes

ζ̄(x) = C11 (xl − x) + C12 and U =
C11 hb
r∗

. (51)

The constants C1,....,C12 are determined from the boundary conditions (7)
and (8), and the continuity of the set-up and velocity at the cross-sections
x = xf , x = xbr, x = 0, x = xt and x = xb. The resulting expressions for
coefficients Cn are listed in the Appendix.
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4. Numerical calculations

In the previous Sections, a closed-form solution was obtained for the
simpler case of wave breaking on the shoals of the idealized plane bottom
shapes. Using this solution, Fig. 2 shows the resulting set-up, current
velocity and cross shoal transport for a shoal of 1:25 seawards and shoreward
slopes. The gradient of the radiation stress through the surf zone and shoal
top produces the set-up and accelerates a current up the slope. Maximum
set-up is about 10% of the incident wave height. The current velocity over
the shoal top is constant to match the continuity of the cross shoal transport
which is calculated as a product of flow velocity and water depth.
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Fig. 2.Wave impact on the shoal (H0 = 2m, T = 4s, K = 0.275, Γ = 0.475): wave
set-up, induced flow and cross shoal transport (a); geometry of a shoal with lagoon
behind (b). Solid line – solution using the dissipation model by Dally et al., dashed
line – solution using the similarity dissipation model
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It should be noted that the set-down value observed at the breaking
point is not associated with wave shoaling as predicted by Longuet-Higgins
& Stewart (1964), because we assumed that the radiation stress gradient is
negligibly small in the Regions seaward of the surf zone (Regions I and II).
The set-down shown in Fig. 2 results from the pressure gradient needed to
produce transport through the shoal. Therefore, the set-down value depends
on the magnitude of transport. As at the shoal edge, the wave height is
greater than the stable value Γ4ht, the breaking continues in Region IV
(constant water depth), where the wave height should satisfy eq. (44).

In the same Figure, results for a common similarity model (H(x) ≈ h(x))
are shown (dashed lines) for comparison. Under the similarity assumption,
the wave height in Region III varies proportionally to the water depth, i.e.
H(x) = Hbrhbr h(x). For given incident wave parameters and shoal geometry,
both approaches result in very similar values of the set-up and current
velocity. The small differences observed are due to different wave energy
attenuation scenarios, which are shown in Fig. 3. In Region III, between
breaking point and shoal edge, the gradient of dSxxdx ≈

H2

dx for the Dally et al.
model is greater than for the similarity model. In Region IV, the gradients
are opposed.

This solution can be extended to study waves propagating over a wide
flat shoal, without a rear slope (m1 → 0) – (see Fig. 4). Under the same
incident wave parameters, the wave set-up value is slightly higher than for
the case shown in Fig. 2. As the resulting current velocity is smaller, the
set-up attenuates slowly and vanishes at the end of shoal (x = xl) to much
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Fig. 5. Relationship between depth-averaged velocity and set-up



386 S.R. Massel, R.M. Brinkman

the boundary condition (8). Both wave height attenuation scenarios yield
a very similar set-up and current velocity values.

Figs. 2 and 4 showed that the magnitudes of the current velocity and
set-up depend on the width of the shoal top. This dependence is shown in
Fig. 5. The non-dimensional set-up increases when the non-dimensional flat
shoal is widening. The opposite tendency is shown for the non-dimensional
flow velocity.

5. Conclusions

This paper examines the wave-induced component of cross-shoal flow.
A linear model was used for the simple shoal geometry when the depth is
a linear function of distance. This assumption permits an analytical solution
of the corresponding boundary value problem. Two different approaches
have been applied to the parameterization of the dissipation due to wave
breaking. Numerical calculations show that there is no great difference
between the resulting set-up heights and the flow velocities for the two
parameterizations. The model demonstrates how the relative flow velocity
and set-up height depend on the geometry of the shoal and offshore forcing.

The extension of the solution to a more complicated bathymetry and
the verification against the experimental data collected during the field
experiment at the Ningaloo Reef (Western Australia) will be given in the
second part of the paper, which is in preparation.
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Appendix – Coefficients Cn and pn

Boundary conditions (7) and (8) and the continuity of the set-up and velocity
at the cross-sections x = xf , x = xbr, x = 0, x = xt and x = xb give the
following relationships for the coefficients Cn:

C1 = 0 and C2 = p211C11 + p200, (52)

C3 = p311C11 + p300 and C4 = p411C11 + p400, (53)

C5 = p511C11 + p501 and C6 = p611C11 + p600, (54)

C7 = p711C11 and C8 = p811C11 + p800, (55)

C9 = p911C11 and C10 = p1011C11, (56)

C11 =
p11a
p11b

and C12 = 0, (57)

in which

p711 = −
(
hb
ht

)2
and p911 = −

h2b
m1

, (58)

p1011 = (xl − xb)−
hb
m1

and p800 = M exp
(
−Kxt

ht

)
, (59)

p811 = p1011 −
p911
ht
− p711 ht, (60)

p500 =
3mHbr
16

(
Hbr
hbr

)[
β(1 + α)

(
ht
hbr

)β−1
− 2α

(
ht
hbr

)]
(61)

− ht

[
A

mβ
hβ−2t +

B

2m

]
, (62)

p501 = p500 ht and p511 = h2t p711, (63)

p600 = p800 −M − p501
mht

+
A

m2β(β − 1)
hβ−1t , (64)

p611 = p811 −
p511
mht

, (65)

p301 =
3mHbr
16

(
Hbr
hbr

)
[β(1 + α)− 2α]− hbr

[
A

mβ
hβ−2br +

B

2m

]
, (66)

p300 =
1
m

(p301hbr − p501) and p311 = −
p511
m

, (67)

p200 = −
mp300
h20

and p211 = −
mp311
h20

, (68)

p400 = (x0 − xf )p200 +
p300
h0

and p411 = (x0 − xf )p211 +
p311
h0

, (69)

p11a =
p300
hbr
− p400 +

p501
mhbr

+ p600 −
A

m2β(β − 1)
hβ−1br +

B

2m
xbr, (70)

p11b = −
p311
hbr

+ p411 −
p511
mhbr

− p611. (71)


