Oceanologia No. 56 (3) / 14
Contents
Papers
-
Recent sea surface temperature trends and future scenarios for the Mediterranean Sea: Mohamed Shaltout, Anders Omstedt
-
Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov: Gennady G. Matishov, Sergei L. Dzhenyuk, Denis V. Moiseev, Aleksandr P. Zhichkin
-
Field study of film spreading on a sea surface: Aleksandr E. Korinenko, Vladimir V. Malinovsky
-
Groundwater flow due to a nonlinear wave set-up on a permeable beach: Anna Przyborska
-
Relative infaunal bivalve density assessed from split beam echosounder angular information: Noela Sánchez-Carnero, Daniel Rodríguez-Prez, Nuria Zaragozá, Victor Espinosa, Juan Freire
-
DOC and POC in the water column of the southern Baltic. Part I.Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter: Anna Maciejewska, Janusz Pempkowiak
-
Genetic characteristics of three Baltic Zostera marina populations: Magdalena Gonciarz, Józef Wiktor, Agnieszka Tatarek, Piotr Węgleński, Anna Stanković
-
Importance of bacteria and protozooplankton for faecal pellet degradation: Nathalie Morata, Lena Seuthe
-
Short-term variation in zooplankton community from Daya Bay with outbreaks of Penilia avirostris: Kaizhi Li, Jianqiang Yin, Yehui Tan, Liangmin Huang, Xingyu Song
-
Benthic non-indigenous species among indigenous species and their habitat preferences in Puck Bay (southern Baltic Sea): Urszula Janas, Halina Kendzierska
-
Epibionts and parasites on crustaceans (Copepoda, Cladocera, Cirripedia larvae) inhabiting the Gulf of Gdańsk (Baltic Sea) in very large numbers: Luiza Bielecka, Rafał Boehnke
Communications
-
Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum: Zhuoping Cai, Honghui Zhu, Shunshan Duan
-
Absence of evidence for viral infection in colony-embedded cyanobacterial isolates from the Curonian Lagoon: Sigitas Sulcius, Juozas Staniulis, Ricardas Paskauskas, Irina Olenina, Airina Salyte, Aurelija Ivanauskaite, Evelina Griniene
-
Large red cyanobacterial mats (Spirulina subsalsa Oersted ex Gomont) in the shallow sublittoral of the southern Baltic: Maria Włodarska-Kowalczuk, Piotr Balazy, Justyna Kobos, Józef Wiktor, Marek Zajączkowski, Wojciech Moskal
Papers
Recent sea surface temperature trends and future scenarios for the Mediterranean Sea
Oceanologia 2014, 56(3), 411-443
http://dx.doi.org/10.5697/oc.56-3.411
Mohamed Shaltout1,2,*, Anders Omstedt2
1Faculty of Science, Department of Oceanography, University of Alexandria,
Alexandria, Egypt;
e-mail: mohamed.shaltout@gvc.gu.se
*corresponding author
2Department of Earth Sciences, University of Gothenburg,
P.O. Box 460, Göteborg 40530, Sweden
keywords:
Mediterranean Sea, sea surface temperature, climate change, heat exchange, total cloud cover
Received 13 May 2013, revised 25 November 2013, accepted 23 January 2014.
Abstract
We analyse recent Mediterranean Sea surface temperatures (SSTs) and theirresponse to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR) daily SST data, 1982-2012. These data indicate significantannual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea) and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin). Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6°C century-1 in the Representative Concentration Pathways 85 (RCP85) scenario.
References
Anonymous, 1988,Navalenvironmentalprediction researchfacility,Tech.Rep. (U.S),
Univ. California,67 pp.
BakunA.,AgostiniA.,2001,Seasonalpatternofwindinducedupwelling/downwellingin
the Mediterranean Sea, Sci. Mar.,65 (3), 243-257.
BelkinM.,2009,Rapidwarmingoflarge marineecosystems, Prog.Oceanogr.,
81 (1-4), 207-213,
http://dx.doi.org/10.1016/j.pocean.2009.04.011
BerrisfordP.,DeeD.,PoliP.,BruggeR.,FieldingK.,Fuentes M.,Kallberg P.,
KobayashiS., UppalaS., SimmonsA.,2011, TheERA-Interim archive, version 2.0., ERA Rep.
Ser. No. 1 (Tech. Rep.), European Centre for Medium- Range Weather Forecasting (ECMWF), Reading,
23 pp.
Borzelli G., Manzella G., Marullo S., Santoleri R., 1999, Observationsof coastal filamentsin
the AdriaticSea,J. MarineSyst.,20 (1-4),187-203,
http://dx.doi.org/10.1016/S0924-7963(98)00082-7
BrierleyM.,FedorovV.,2010, Relativeimportanceof meridionalandzonalsea surface
temperaturegradientsfortheonsetoftheiceagesandPliocene- Pleistoceneclimate
evolution,Paleoceanography, 25 (2),PA2214,
http://dx.doi.org/10.1029/2009PA001809
Clarke L., EdmondsJ., Jacoby H., Pitcher H., Reilly J., Richels R., 2007, Scenarios of greenhouse
gas emissionsand atmosphericconcentrations. Sub-report2.1a of Synthesisand Assessment
Product2.1.,ClimateChangeScience Program and the Subcommittee on Global ChangeResearch,
Washington, DC.
Delgado J., Garcia-Lafuente J., Vargas M. J., 2001, A simple model for submaximal exchange through
the Straitof Gibraltar, Sci. Mar.,65 (4), 313-322.
D’OrtenzioF.,MarulloS., SantoleriR.,2000, Validation of AVHRR Pathfinder SSTs over
theMediterraneanSea, Geophys. Res.Lett.,27 (2), 241-244,
http://dx.doi.org/10.1029/1999GL002357
Ginzburg A., Kostianoy A., Sheremet N., 2004, Seasonal and interannual variability of theBlack
Seasurfacetemperature as revealedfromsatellitedata(1982-2000),J. MarineSyst.,52 (1-4), 33-50,
http://dx.doi.org/10.1016/j.jmarsys.2004.05.002
Ferrarese S., CassardoC., Elmi A., Genovese R., Longhetto A., Manfrin M., Richiardone R., 2009,
Air-seainteractions in the Adriaticbasin:simulations of Bora and Sirocco wind events,
Geofizyka, 26 (2), 157-170.
Fujino J., Nair R., Kainuma M., Masui T., Matsuoka Y., 2006, Multigas mitigation analysison
stabilizationscenariosusingaimglobal model,Energ.J., 3 (SI),
343-354.
Jiang Q., Ronald B., Doyle J., 2003, The nature of the mistral: Observations and
modelling of two MAP events, Q. J. Roy. Meteor. Soc., 129 (588), 857-875,
http://dx.doi.org/10.1256/qj.02.21
Jung T., Ferranti L., Tompkins M., 2006, Response to the summer of 2003
Mediterranean SST anomalies over Europe and Africa, J. Climate, 19 (20), 5439-5454,
http://dx.doi.org/10.1175/JCLI3916.1
IPCC, 2007, Climate change 2007: synthesis report. Contribution of working groups
I-III to the Fourth assessment report of the Intergovernmental panel on climate
change, Cambridge Univ. Press, Cambridge.
Klein B., Roether W., Manca B., Bregant D., Beitze V., Kovacevic V., Luchetta A.,
1999, The large deep water transient in the Eastern Mediterranean, Deep-Sea
Res. Pt. I, 46 (3), 371-414,
http://dx.doi.org/10.1016/S0967-0637(98)00075-2
Kotroni V., Lagouvardos K., Lalas D., 2001, The effect of the island of Crete on
the Etesian winds over the Aegean Sea, Q. J. Roy. Meteor. Soc., 127 (576), 1917-1937,
http://dx.doi.org/10.1002/qj.49712757604
LargeW., Pond S., 1981, Open ocean momentum flux measurements in moderate to
strong winds, J. Phys. Oceanogr., 11 (3), 324-336,
http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
Lelieveld J., Berresheim H., Borrmann S., Crutzen P., Dentener J., Fischer H.,
Feichter J., Flatau P. J., Heland J., Holzinger R., Korrmann R., Lawrence M.
G., Levin Z., Markowicz K. M., Mihalopoulos N., Minikin A., Ramanathan
V., De Reus M., Roelofs G. J., Scheeren H. A., Sciare J., Schlager H.,
Schultz M., Siegmund P., Steil B., Stephanou E.G., Stier P., Traub M.,
Warneke C., Williams J., Ziereis H., 2002, Global air pollution crossroads over
the Mediterranean, Science, 298, 794-799,
http://dx.doi.org/10.1126/science.1075457
Leitz M., 1999, Ionian sea surface temperature: satellite and drifter observations,
May to October 1995, M. Sc. thesis, Naval Postgrad. School, Monterey, 106 pp.
Lionello P., Gacic M., Gomis D., Garcia-Herrera R., Giorgi F., Planton S., Trigo
R., Theocharis A., Tsimplis M., Ulbrich U., Xoplaki E., 2010, Program focuses
on climate of the Mediterranean region, EOS T. Am. Geophys. Un., 93 (10), 105-106,
http://dx.doi.org/10.1029/2012EO100001
Luterbacher J., Dietrich D., Xoplaki E., Grosjean M., Wanner H., 2004, European
seasonal and annual temperature variability, trends, and extremes since 1500,
Science, 303 (5663), 1499-1503,
http://dx.doi.org/10.1126/science.1093877
Marullo S., Buongiorno Nardelli B., Guarracino M., Santoleri R., 2007, Observing
the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR Sea Surface
Temperatures (1985 to 2005). Re-analysis and validation, Ocean Sci., 3, 299-310,
http://dx.doi.org/10.5194/os-3-299-2007
Marullo S., Santoleri R., Malanotte-Rizzoli P., Bergamasco A., 1999, The sea
surface temperature field in the Eastern Mediterranean from advanced very
high resolution radiometer (AVHRR) data: Part II. Interannual variability,
J. Mar. Syst., 20 (1-4), 83-112,
http://dx.doi.org/10.1016/S0924-7963(98)00072-4
Metaxas A., Bartzokas A., 1994, Pressure covariability over the Atlantic, Europe
and N. Africa. Application: Centers of action for temperature, winter
precipitation and summer winds in Athens, Greece, Theor. Appl. Climatol.,
49 (1), 9-18,
http://dx.doi.org/10.1007/BF00866284
Millot C., 2005, Circulation in the Mediterranean Sea: evidences, debates and
unanswered questions, Sci. Mar., 69 (S1), 5-21.
Nykjaer L., 2009, Mediterranean Sea surface warming 1985-2006, Climate Res., 39, 11-17,
http://dx.doi.org/10.3354/cr00794
Omstedt A., 2011, Guide to process based modeling of lakes and coastal seas,
Springer-Verlag, Berlin, Heidelberg, 258 pp.,
http://dx.doi.org/10.1007/978-3-642-17728-6
Parada M., Canton M., 1998, Sea surface temperature variability in Alboran sea
from satellite data, Int. J. Remote Sens., 19 (13), 2439-2450,
http://dx.doi.org/10.1080/014311698214541
Parry M., Canziani O., Palutikof J., Linden P., Hanson C., 2007, Contribution of
Working Group II to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York.
Poulain P., Menna M., Mauri E., 2012, Surface geostrophic circulation of the
Mediterranean Sea derived from drifter and satellite altimeter data, J. Phys.
Oceanogr., 42 (6), 973-990,
http://dx.doi.org/10.1175/JPO-D-11-0159.1
Rixen M., Beckers J., Levitus S., Antonov J., Boyer T., Maillard C., Fichaut
M., Balopoulos E., Iona S., Dooley H., Garcia M., Manca B., Giorgetti A.,
Manzella G., Mikhailov N., Pinardi N., Zavatarelli M., 2005, The Western
Mediterranean Deep Water: a proxy for climate change, Geophys. Res. Lett.,
32 (12), L12608,
http://dx.doi.org/10.1029/2005GL022702
Riahi K., Gruebler A., Nakicenovic N., 2007, Scenarios of long-term socio-economic
and environmental development under climate stabilization, Technol. Forecast
Soc., 74 (4), 887-935,
http://dx.doi.org/10.1016/j.techfore.2006.05.026
Shaltout M., El Gindy A., Omstedt A., 2013, Recent climate trends and future
scenarios along the Egyptian Mediterranean coast, Geofizika, 32 (1), (in press).
Shaltout M., Omstedt A., 2012, Calculating the water and heat balances
of the Eastern Mediterranean basin using ocean modeling and available
meteorological, hydrological and ocean data, Oceanologia, 54 (2), 199-232,
http://dx.doi.org/10.5697/oc.54-2.199
Skliris N., Sofianos S., Gkanasos A., Axaopoulos P., Mantziafou A., Vervatis V.,
2011, Long-term sea surface temperature variability in the Aegean Sea, Adv.
Oceanogr. Limnol., 2 (2), 125-139,
http://dx.doi.org/10.1080/19475721.2011.601325
Skliris N., Sofianos S., Gkanasos A., Mantziafou A., Vervatis V., Axaopoulos P.,
Lascaratos A., 2012, Decadal scale variability of sea surface temperature in
the Mediterranean Sea in relation to atmospheric variability, Ocean Dynam.,
62 (1), 13-30,
http://dx.doi.org/10.1007/s10236-011-0493-5
Somot S., Sevault F., DéquéM., 2006, Transient climate change scenario simulation
of the Mediterranean Sea for the twenty-first century using a high-resolution
ocean circulationmodel,Clim. Dynam.,27 (7-8),851-879,
http://dx.doi.org/10.1007/s00382-006-0167-z
Taylor K.,Stouffer R.,Meehl G.,2012,An overview ofCMIP5 and the experiment
design,BAMS, 93 (4),485-498,
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
Tsimplis M., RixenM., 2002, Sea level inthe Mediterranean:the contributionof temperature
andsalinitychanges,Geophys. Res.Lett., 29 (23),2136, 4 pp.,
http://dx.doi.org/10.1029/2002GL015870
Trenberth K. E., Large W. G., Olson J. G., 1990, Themeanannual cycle in global ocean wind
stress, J. Phys.Oceanogr., 20 (11),1742-1760,
http://dx.doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2
Van Vuuren D.,Den Elzen M.,Lucas P., Eickhout B., Strengers B., Van Ruijven B., Wonink S., Van
Houdt R., 2007, Stabilizinggreenhousegas concentrations at low levels: an assessmentof
reductionstrategiesand costs,Climatic Change,
81 (2),119-159,
http://dx.doi.org/10.1007/s10584-006-9172-9
VilibićI.,Grbec B.,Supić N., 2004, Dense water generationin the north Adriatic in 1999 and
its recirculationalong the Jabuka Pit, Deep-Sea Res. Pt.I, 51 (11),
1457-1474,
http://dx.doi.org/10.1016/j.dsr.2004.07.012
Zervakis V., Georgopoulos D., Drakopoulos P., 2000, The role of the North Aegean in triggering the
recentEasternMediterranean climaticchanges,J. Geophys. Res., 105 (C11),103-126,
http://dx.doi.org/10.1029/2000JC900131
Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov
Oceanologia 2014, 56(3), 445-460
http://dx.doi.org/10.5697/oc.56-3.445
Gennady G. Matishov1,2, Sergei L. Dzhenyuk1, Denis V. Moiseev1,*,
Aleksandr P. Zhichkin1
1Murmansk Marine Biological Institute of Kola Science Centre, Russian Academy of Sciences,
Vladimirskaya St. 17, 183010 Murmansk, Russia;
e-mail: Denis_Moiseev@mmbi.info
*correspondung author
2South Science Centre of Russian Academy of Sciences,
Chekhova Av. 41, 344006 Rostov-on-Don, Russia
keywords:
Climate, air, sea ice, anomalies, Voeikov axis, blocking
Received 5 August 2013, revised 18 February 2014, accepted 21 February 2014.
Abstract
This paper analyses the anomalous hydrometeorological situation that occurred at the beginning of 2012 in the seas of the Russian Arctic and Russian South. Atmospheric blocking in the temperate zone and the extension of the Siberian High to the Iberian Peninsula (known as the Voeikov et al. axis) led to a positive anomaly of air and water temperatures and a decrease in the ice extent in the Barents and Kara Seas. At the same time a prolonged negative air temperature anomaly was recorded in central and southern Europe and led to anomalously severe ice conditions in the Sea of Azov. Winter hydrographic conditions in the Barents and Kara Seas are illustrated by a unique set of observations made using expendable bathythermosalinographs (XCTD).
References
AlekseevG. V.,IvanovN. E.,PnyushkovA. V.,Balakin A. A.,2010,Climate
alterationsin the marineArcticat the beginning of XXI century,Probl.Arct. Antarct., 3
(86), 22-34, (in Russian).
Atlasof the oceans.ArcticOcean, 1980, MMF of the USSR, 160 pp., (in Russian).
Changeabilityof natural conditionsin the shelf zone of the Barentsand Kara seas,
2004, SPb.,AARI, 432 pp.,(in Russian).
FrolovI. E.,GudkovichZ. M., KarklinV. P.,SmolyanitskiyV. M., 2010, Changes ofthe
ArcticandAntarctic climate- resultofnaturalcause,Probl.Arct. Antarct., 2 (85),
52-61, (in Russian).
Hydrometeorology andhydrochemistryoftheUSSRseas,1990, [in:] Volume1.
The BarentsSea. Issue 1. Hydrometeorologicalconditions,L. Gidrometeoizdat, Leningrad,280
pp., (in Russian).
DzerdzeyevskiyB. L.,Kurganskaya V. M.,VitvitskayaZ. M.,1946,Typification ofcirculating
mechanismsin northern hemisphere andcharacteristic of synopticseasons,Synopt.
Meteorol., 2 (21), Cent. Inst.Forecast. M; Tr.Res. Establishm., L. Gidrometeoizdat, 80 pp., (in
Russian).
Kattsov V. M., Porifiryev B. N., 2011, Climate changes and its impact on
environment and economy of the Arctic, [in:] The Arctic:zone of peace and collaboration, A. V.
Zagorskiy (ed.),IWEIRRAS,. 7-26, (in Russian).
LevermannA.,BamberJ. L.,DrijfhoutS.,GanopolskiA.,HaeberliW.,Harris N. R. P.,
Huss M., Krüger K., Lenton T. M., Lindsay R. W., Notz D., Wadhams P.,WeberS.,2012, Potential
climatictransitions withprofoundimpacton Europe, Climatic Change, 110 (3-4),
845-878,
http://dx.doi.org/10.1007/s10584-011-0126-5
Liu J., CurryJ. A.,WangH.,Song M., HortonR. M., 2012, Impactof declining Arcticsea
iceonwintersnowfall,PNAS,109 (11),4074-4079,
http://dx.doi.org/10.1073/pnas.1114910109
Loeng H., 1991, Featuresof the physicaloceanographicconditionsof the Barents Sea, Polar
Res., 10 (1), 5-18,
http://dx.doi.org/10.1111/j.1751-8369.1991.tb00630.x
MatishovG. G.,2008,Theinfluence ofclimatic andiceregimevariabilityon
navigation,HeraldRuss.Acad.Sci.,78 (5),457-463,
http://dx.doi.org/10.1134/S1019331608050043
MatishovG. G.,DzhenyukS. L.,2012, Arctic challengesandproblemsofpolar science,
HeraldRuss. Acad.Sci., 82 (5), 355-362,
http://dx.doi.org/10.1134/S1019331612050073
Matishov G. G., Dzhenyuk S. L., Zhichkin A. P., Moiseev D. V., 2011, Climate of the Western Arctic
seas at the beginning of XXI century, Izvestiya RAS, Geograph. Ser., Vol. 3, 17-32, (in Russian).
MatishovG. G.,GargopaYu. M., ChikinA. L., 2012a, Modelingof ice formation intheSea
of Azovwithaccountfortheclimatictrendintheearlytwenty- first century,Dokl.
Earth Sci., 445 (2), 1011-1014,
http://dx.doi.org/10.1134/S1028334X12080132
MatishovG. G.,MatishovD. G.,Moiseev D. V.,2009, InflowofAtlantic-origin waters to the
BarentsSea along glacial troughs, Oceanologia, 51 (3), 293-312,
http://dx.doi.org/10.5697/oc.51-3.321
MatishovG., Moiseev D., LyubinaO., Zhichkin A., DzhenyukS., Karamushko O., FrolovaE.,
2012b, Climateand cyclic hydrobiological changes of the Barents Seafromthetwentiethto
twenty-first centuries, PolarBiol.,35 (12),1773-1790,
http://dx.doi.org/10.1007/s00300-012-1237-9
MatskovskiyV. V.,KononovaN. K.,2011, Studyingof circulationfluctuation of the northern
hemisphereatmosphereusing the method of digital mapping, Izv. RAS. Geogr. ser. 6, 100-114, (in
Russian).
MoiseevD. V.,KulyginV. V.,BerdnikovS. V.,2012,Joint MMBI, SSCRAS and NODC NOAA
approach to oceanographic and hydro-biological database organizationfor the Arcticand Southern
seas of Russia,Ber.Polar Meeresforsch., Rep. PolarMarine Res. No. 640 137-151.
Moore G. W. K.,RenfrewI. A.,2012, ColdEuropeanwinters: interplaybetween theNAOand
theEastAtlantic mode,Atmos.Sci.Let.,13 (1),1-8,
http://dx.doi.org/10.1002/asl.356
Nordenskiöld A. E., 1882, DieUmsegelung Asiensund Europasauf der Vega, J. N.
Brodhaus, Leipzig, 1186 pp.
OverlandJ. E.,WangA.,2010, Large-scaleatmosphericcirculationchangesare associated
with the recentlossofArcticseaice,TellusA, 62 (1),1-9,
http://dx.doi.org/10.1111/j.1600-0870.2009.00421.x
ShakinaN. P.,IvanovaA. R., 2010, Theblocking anticyclones: the state of studies and
forecasting, Russ. Meteorol. Hydrol., 35 (11), 721-730,
http://dx.doi.org/10.3103/S1068373910110014
Stephenson S. R., Smith L. C., BrighamL. W., Agnew J. A., 2013, Projected21st- century changes
to Arcticmarine access, Climatic Change, 118 (3-4), 885-899,
http://dx.doi.org/10.1007/s10584-012-0685-0
Tourpali K.,ZanisP.,2013,Anticyclonicblocking effectsoverEuropefroman ensemble
of regional climate models in recent past winters, [in:] Advances in meteorology, climatology and
atmospheric physics, C. G. Helmis & P. T. Nastos (eds.),SpringerAtmos. Sci., Heidelberg,New
York, Dordrecht, London,773-778.
VangengeimG. Y.,1940, Long-rangeforecastoftemperature and riversopening, Tr.State
Hydrol. Inst., 10, 207-236, (in Russian).
Vinje T., 2001, Anomaliesand trends of sea-ice extent and atmospheric circulation intheNordic
Seasduringthe period1864-1998, J. Clim.,14 (3),255-267,
http://dx.doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2
Voeikov A. I., 1884, Klimaty zemnogo shara,v OsobennostiRossii,St. Petersburg, [Reprint.,
1948, Izdatel’stvo Akad. Nauk SSSR, Moscow)].
Zhichkin A. P., 2010, Climaticice anomalies of the Barents Sea.Nature of the shelf and
archipelagoes ofEuropeanArctic,[in:]ComplexstudiesofSpitsbergen’s nature (Murmansk,
27-30 October 2010), Proc. Int. Sci. Conf., 10, M.: GEOS,
133-137, (in Russian).
Field study of film spreading on a sea surface
Oceanologia 2014, 56(3), 461-475
http://dx.doi.org/10.5697/oc.56-3.461
Aleksandr E. Korinenko1,*, Vladimir V. Malinovsky1,2
1Marine Hydrophysical Institute of the NAS of Ukraine,
Kapitanskaya 2, Sevastopol 299011, Ukraine;
e-mail: korinenko.alex@gmail.com
*correspondung author
2Small Enterprise DVS LTD,
Kapitanskaya 4, Sevastopol 299011, Ukraine
keywords:
Oil slick, film spreading, sea surface pollution, field study
Received 20 December2012, revised 14 March 2014, accepted 31 March 2014.
Abstract
The results of a field study of surface film spreading on the sea surface are presented.The experiments were carried out in the coastal zone of the Black Sea in a wide range of wind speeds and wave conditions. Vegetable oil was used for preparing the surfactants. It was found that at moderate and strong wind speeds the slicks take on a shape similar to an ellipse and are orientated in the direction of the air flow. An increase in the speed of the spreading slick along its major axis with strongwind was discovered.
References
Bendat J. S., Piersol A. G., 1999, Random dataanalysis and measurement
procedures, Wiley, New York, 594 pp.
Boniewicz-SzmytK.,PogorzelskiS. J., 2008, Crudeoilderivativesonseawater:
signaturesofspreadingdynamics,J. MarineSyst.,74 (Supp.), 41-51,
http://dx.doi.org/10.1016/j.jmarsys.2007.11.015
Buckmaster J.,1973,Viscous-gravityspreadingofanoilslick,J. FluidMech.,
59 (3), 481-491,
http://dx.doi.org/10.1017/S0022112073001667
CampD. W.,BergJ. C.,1987,Thespreadingofoilonthewater inthesur-
face-tensionregime, J. Fluid Mech., 184, 445-462,
http://dx.doi.org/10.1017/S0022112087002969
Dussaud A. D., Troian S. M., 1998,Dynamics ofspontaneousspreadingwith evaporation
on a deep fluid layer, Phys.Fluids,10 (1),23-38,
http://dx.doi.org/10.1063/1.869546
Elliott A. J., 1986, Shear diffusionand the spread of oil in the surface layers of the
North Sea, Ocean Dynam.,39 (3), 113-137.
Fay J. A., 1969, The spread of oil slicks on a calm sea, [in:] Oilon the sea, D. Hoult
(ed.),Plenum,New York, 114 pp.
Foda M., CoxR. G., 1980,The spreading ofthin liquidfilms onawater-
air interface,J.FluidMech.,101, 33-51,
http://dx.doi.org/10.1017/S0022112080001516
Hoult D., 1972, Oil spreading on the sea, Annu. Rev. Fluid Mech., 4, 341-368,
http://dx.doi.org/10.1146/annurev.fl.04.010172.002013
Large W. G., Pond S., 1981, Open ocean momentum flux measurements in moderate tostrongwinds,J.
Phys.Oceanogr.,11 (3),324-336,
http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
Lehr W. J., Cekirge H. M., FragaR. J., Belen M. S., 1984a, Empiricalstudies of the spreading
of oil spills, Oil Petrochem. Pollut., 2 (1), 7-12,
http://dx.doi.org/10.1016/S0143-7127(84)90637-9
LehrW. J., Fraga R. J., BelenM. S.,CekirgeH. M.,1984b,Anewtechnique to
estimate initialspillsizeusingamodified Fay-type spreadingformula, Mar. Pollut.
Bull., 15 (9), 326-329,
http://dx.doi.org/10.1016/0025-326X(84)90488-0
Phillips W. R. C.,1997,Onthespreadingradiusofsurfacetension drivenoil on
deepwater,Appl.Sci.Res.,57 (1), 67-80,
http://dx.doi.org/10.1007/BF02528764
Svitova T. F.,Hill R. M., Radke C. J.,1999, Spreading of aqueous dime-
thyldidodecylammoniumbromide surfactant droplets overliquidhydrocar- bonsubstrates,
Langmuir, 15 (21), 7392-7402,
http://dx.doi.org/10.1021/la981683n
Groundwater flow due to a nonlinear wave set-up on a permeable beach
Oceanologia 2014, 56(3), 477-496
http://dx.doi.org/10.5697/oc.56-3.477
Anna Przyborska
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland;
e-mail: aniast@poczta.onet.pl
keywords:
Pore pressure, permeable beach, circulation of groundwater, filtering, modelling, set-up
Received 12 March 2013, revised 19 February 2014, accepted 21 February 2014.
Abstract
Water flow through the beach body plays an important role in the biological status of the organisms inhabiting the beach sand. For tideless seas, the groundwater flow in shallow water is governed entirely by the surface wave dynamics on the beach. As waves propagate towards the shore, they become steeper owing to the decreasing water depth and at some depth, the waves lose their stability and start to break. When waves break, their energy is dissipated and the spatial changes of the radiation stress give rise to changes in the mean sea level, known as the set-up. The mean shore pressure gradient due to the wave set-up drives the groundwater circulation within the beach zone. This paper discusses the circulation of groundwater resulting from a nonlinear set-up. The circulation of flow is compared with the classic Longuet-Higgins (1983) solution and the time series of the set-upis considered for a 24 h storm. Water infiltrates into the coastal aquifer on the upper part of the beach near the maximum run-up and exfiltration occurs on the lower part of the beach face near the breaking point.
References
Biot M. A., 1956, Theoryof propagation of elastic waves in a fluid-saturated porous
solid, I. Low frequency range, II. Higher frequency range, J. Acoust. Soc. Am.,
28 (2), 168-191,
http://dx.doi.org/10.1121/1.1908239
DallyW. R.,DeanR. G.,DalrympleR. A.,1985,Waveheightvariationacross beaches of
arbitraryprofile, J. Geophys.Res., 90, C6, 11917-11928,
http://dx.doi.org/10.1029/JC090iC06p11917
HolthuijsenL.H.,2007, Wavesinocenicandcoastalwaters,CambridgeUniv.
Press,New York,
http://dx.doi.org/10.1017/CBO9780511618536
Longuet-HigginsM. S., 1983, Waveset-up,percolationandundertowinthesurf zone, Proc.
Roy. Soc. London, A390, 283-291,
http://dx.doi.org/10.1098/rspa.1983.0132
Longuet-Higgins M. S., Stewart R. W.,1962, Radiation stressand masstransport in gravity
waves, with applicationto surf beats, J. FluidMech., 13, 481-504,
http://dx.doi.org/10.1017/S0022112062000877
Longuet-HigginsM. S.,StewartR. W.,1964, Radiation stressesinwaterwaves, a physical
discussionwith applications,Deep Sea Res., 11, 529-562.
Massel S. R., 2001, Circulationof groundwaterdue to wave set-up on a permeable beach,
Oceanologia, 43 (3), 279-290.
MasselS. R.,Przyborska A.,Przyborski M.,2004, Attenuation ofwave-induced groundwater
pressurein shallow water.Part1, Oceanologia, 46 (3), 383-404.
MasselS. R.,Przyborska A.,Przyborski M.,2005, Attenuation ofwave-induced groundwater
pressureinshallow water.Part2. Theory, Oceanologia,47 (3),
291-323.
MoshagenH.,Torum A.,1975,Waveinducedpressuresinpermeablesea-beds, J. Waterway
Div., 101, 49-57.
SingamsettiS. R.,WindE. G.,1980, Breakingwaves:characteristics of shoaling and
breakingperiodicwavesnormallyincidenttoplanebeachesof constant slope, Delft Hydr.
Lab., Rep. M1237, 80.
Verruijt A., 1969, Elasticstorage of aquifers.Flow through porous media,R. J. M.
Deweist, Acad. Press,New York, 331-376.
Relative infaunal bivalve density assessed from split beam echosounder angular information
Oceanologia 2014, 56(3), 497-521
http://dx.doi.org/10.5697/oc.56-3.497
Noela Sánchez-Carnero1,*,
Daniel Rodríguez-Prez2,
Nuria Zaragozá3,
Victor Espinosa3,
Juan Freire4,5
1Grupo de Oceanografá Física, Universidade de Vigo,
Campus Lagoas-Marcosende, 36200 Vigo, Spain;
e-mail: noelas@gmail.com
*corresponding author
2Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED,
C/Paseo de la Senda del Rey, 28040 Madrid, Spain
3Institut d'Investigació per a la Gestió Integrada de Zones Costaneres,
C/Paranimf 1, 46730 Grau de Gandia, Spain
4Barrabés Next,
C. Serrano 16-1, 28001 Madrid, Spain
5Teamlabs,
C. Gobernador 26, 28014 Madrid, Spain
keywords:
Shellfish beds, stock assessment, split-beam echosounder, angular information, Haralick textural features, benthic habitat mapping
Received 30 April2013, revised 30 January 2014, accepted 4 March 2014.
Abstract
Management of shellfish resources requires a spatial approach where mapping is a key tool. Acoustic techniques have been rarely used to map infaunal organisms with a patchy distribution. We propose and test the use of split-beam echosounder angular information to assess razor shell presence and relative density. Our statistical approach combines textural analysis of angular echograms, standard unsupervised multivariate methods andhierarchical classification through dendrograms to identify groups of locations with similar clam densities. The statistical analyses show that the classification is consistent with groundtruthing data and that results are insensitive to boat motion or seabed granulometry. The method developed here constitutes a promising tool for assessing the relative density of razor clam grounds.
References
Adams C., Harris B., Marino II M., Stokesbury K., 2010, Quantifying sea scallop
bed diameter on Georges Bank with geostatistics, Fish. Res., 106 (3), 460-467,
http://dx.doi.org/10.1016/j.fishres.2010.09.021
Allen Y., Wilson C., Roberts H., Supan J., 2005, High resolution mapping and
classification of oyster habitats in Nearshore Louisiana using sidescan sonar,
Estuar. Coasts, 28 (3), 435-446,
http://dx.doi.org/10.1007/BF02693925
Anderson J., Van Holliday D., Kloser R., Reid D., Simard Y., 2008, Acoustic seabed
classification: current practice and future directions, ICES J. Mar. Sci., 65 (6), 1004-1011,
http://dx.doi.org/10.1093/icesjms/fsn061
Bodholt H., Ness H., Solli H., 1989, A new echo-sounder system, Proc. Ins. Ac.,
11, 123-130.
Boswell K., Wilson M., Wilson C., 2007, Hydroacoustics as a tool for assessing fish
biomass and size distribution associated with discrete shallow water estuarine
habitats in Louisiana, Estuar. Coasts, 30 (4), 607-617.
Burns D., Queen C., Sisk H., Mullarkey W., Chivers R., 1989, Rapad and convenient
acoustic sea-bed discrimination for fisheries applications, Proc. Ins. Ac., 11, 169-178.
Cutter G., Demer D., 2010, Multifrequency biplanar interferometric imaging, IEEE
Geosci. Remote S., 7 (1), 171-175,
http://dx.doi.org/10.1109/LGRS.2009.2029533
Darriba Couñago S., Fernéndez Tajes J., 2011, Systematics and distribution, [in:]
Razor clams: biology, aquaculture and fisheries, A. Guerra Díaz, C. Lodeiros
Seijo, M. Baptista Gaspar & F. da Costa Gonzélez (eds.), Xunta de Galicia,
Consellería do Mar, ISBN:978-84-453-4986-1
DeAlteris J., 1988, The application of hydroacoustics to the mapping of subtidal
oyster reefs, J. Shellfish Res., 7, 41-45.
Demer D., Cutter G., Renfree J., Butler J., 2009, A statistical-spectral method for
echo classification, ICES J. Mar. Sci., 66 (6), 1081-1090,
http://dx.doi.org/10.1093/icesjms/fsp054
Diaz R., Solana M., Valente R., 2004, A review of approaches for classifying benthic
habitats and evaluating habitat quality, J. Environ. Manage., 73 (3), 165-181,
http://dx.doi.org/10.1016/j.jenvman.2004.06.004
MacLennan D.N., Copland P., Amstrong E., Simmonds E., 2004, Experiments
on the discrimination of fish and sea bed echoes, ICES J. Mar. Sci., 61 (2), 201-210,
http://dx.doi.org/10.1016/j.icesjms.2003.09.005
Fismare S. L., 2011, Avaliación da pesquería de navalla (
Ensis arcuatus) da ría de
Pontevedra cara unha explotación sostible: estudio e integración dos aspectos
biolóxicos e hidrodinémicos na súa explotación, Tech. rep., Fismare Innov.
Sostenibil. S. L., A Coruñna, Spain.
Folk R. L., 1954, The distinction between grain size and mineral composition in
sedimentary rock nomenclature, J. Geol., 62 (4), 344-359,
http://dx.doi.org/10.1086/626171
Foote K., 1986, Measurement of fish target strength with a split-beam echo sounder,
J. Acoust. Soc. Am., 80, 612-621,
http://dx.doi.org/10.1121/1.394056
Foote K., Kristensen F., Solli H., 1984, Trial of a new split-beam echosounder,
Tech. Rep. Doc. 1984/B: 21, ICES.
Grizzle R., Ward L., Adams J., Dijkstra S., Smith B., 2005, Mapping and
characterizing oyster reefs using acoustic techniques, underwater videography
and quadrat counts, [in:] Am. Fish. Soc. Symp., 41, 152-159.
Haralick R., Shanmugam K., Dinstein I., 1973, Textural features for image
classification, IEEE T. Syst. Man Cyb., 3 (6), 610-621,
http://dx.doi.org/10.1109/TSMC.1973.4309314
Hennig C., 2008, Dissolution point and isolation robustness: robustness criteria
for general cluster analysis methods, J. Multivariate Anal., 99 (6), 1154-1176,
http://dx.doi.org/10.1016/j.jmva.2007.07.002
Holme N.A., 1954, The ecology of British species of Ensis, J. Mar. Biol. Assoc.
UK, 33 (1), 145-172,
http://dx.doi.org/10.1017/S0025315400003532
Hutin E., Simard Y., Archambault P., 2005, Acoustic detection of a scallop bed
from a single-beam echosounder in the St. Lawrence, ICES J. Mar. Sci., 62 (5), 966-983,
http://dx.doi.org/10.1016/j.icesjms.2005.03.007
Jackson D., Richardson M., 2007, High-frequency seafloor acoustics, Springer, New
York, 616 pp.
Jamieson G., 1993, Marine invertebrate conservation: evaluation of fisheries overexploitation
concerns, Am. Zool., 33 (6), 551-567.
Jamieson G., Campbell A., 1998, Estimating king crab (Paralithodes camtschaticus)
abundance from commercial catch and research survey data, Proc. North
Pacific Symp. Invertebrate Stock Assess. Manag., NRC Res. Press, 73-83.
JiangPing T., Ye Q., XeChang T., JianBo C., 2009, Species identification of
Chinese sturgeon using acoustic descriptors and ascertaining their spatial
distribution in the spawning ground of Gezhouba Dam, Chinese Sci. Bull.,
54 (21), 3972-3980,
http://dx.doi.org/10.1007/s11434-009-0557-9
Kostylev V. E., 2012, Benthic habitat mapping from seabed acoustic surveys: do
implicit assumptions hold?, [in:] Sediments, morphology and sedimentary
processes on continental shelves: advances in technologies, research and
applications, M. Li, C. Sherwood & P. Hill (eds.), Wiley-Blackwell, Chichester,
405-416.
Kostylev V. E., Courtney R.C., Robert G., Todd B. J., 2003, Stock evaluation
of giant scallop (Placopecten magellanicus) using high-resolution acoustics
for seabed mapping, Fish. Res., 60 (2-3), 479-492,
http://dx.doi.org/10.1016/S0165-7836(02)00100-5
Legendre P., Ellingsen K., Björnbom E., Casgrain P., 2002, Acoustic seabed
classification: improved statistical method, Can. J. Fish. Aquat. Sci., 59 (7),
1085-1089,
http://dx.doi.org/10.1139/f02-096
Lindenbaum C., Bennell J., Rees E., McClean D., Cook W., Wheeler A.,
Sanderson W., 2008, Small-scale variation within a Modiolus modiolus
(Mollusca: Bivalvia) reefin theIrishSea: I. Seabed mappingand reef
morphology,J. Mar.Biol. Assoc. UK,88 (1),133-141,
http://dx.doi.org/10.1017/S0025315408000374
LurtonX., 2002, Anintroduction to underwateracoustics.Principles and applications,
Springer-Verlag, New York.
LyonsP., 2005,The potentialimpact of shell fragment distributionson high- frequency
seafloor backscatter,IEEEJ.Ocean.Eng.,30 (4),843-851,
http://dx.doi.org/10.1109/JOE.2005.862082
Morris L., Ball D., 2006, Habitat suitability modeling of economically important fish species with
commercial fisheries data, ICES J. Mar.Sci., 63 (9),1590-1603,
http://dx.doi.org/10.1016/j.icesjms.2006.06.008
OrłowskiA., 1982,Application of multiple echoesenergymeasurementsfor evaluation of sea
bottom type, Oceanologia, 19, 61-78.
Peirson G., Frear P., 2003,Fixedlocation hydroacousticmonitoringof fish populations
in the tidal River Hull, north-east England, in relation to water quality,Fisheries.Manag.
Ecol.,10 (1),1-12,
http://dx.doi.org/10.1046/j.1365-2400.2003.00316.x
Raineault N., Trembanis A., Miller D., 2011, Mapping benthic habitats in Delaware Bay and the
coastal Atlantic:acoustic techniques provide greater coverage and high resolution in complex,
shallow-water environments, Estuar. Coast.,35 (2), 682-699,
http://dx.doi.org/10.1007/s12237-011-9457-8
Rodríguez-Pérez D., Sénchez-Carnero N., Freire J., 2013, A pulse-length correction to improve
energy-based seabed classification in coastal areas, (submitted).
Schimel A., Healy T.,JohnsonD., ImmengaD., 2010, Quantitative experimental comparison of
single-beam,sidescan,and multibeambenthic habitatmaps,
ICESJ. Mar. Sci.,67 (8), 1766-1779,
http://dx.doi.org/10.1093/icesjms/fsq102
SimmondsE., MacLennanD., 2005, Fisheries acoustics: theory and practice, 2nd
edn., Blackwell Publ.,Oxford,
http://dx.doi.org/10.1002/9780470995303
Snellen M., SimonsD. G., Riethmueller R., 2008,Highfrequencyscattering
measurements for mussel bed characterisation, [in:] Acoustics̓08, 5253-5258.
von Szalay P. G., McConnaughey R. A., 2002, The effect of slope and vessel speed on the performance
of a single beam acoustic seabed classification system, Fish. Res., 56 (1), 99-112.
WildishD.,FaderG.,LawtonP.,MacDonaldA.,1998, The acoustic detection and
characteristics of sublittoral bivalve reefs in the Bay of Fundy, Cont.Shelf
Res., 18 (1), 105-113,
http://dx.doi.org/10.1016/S0278-4343(98)80002-2
Zaragozé N., Sànchez-Carnero N., Espinosa V., Freire J., 2010, Acoustic techniques
for solenoid bivalve mapping,[in:]Proc.Europ.Conf.Underwater Acoust.,
Vol. 1, 139-144.
DOC and POC in the water column of the southern Baltic. Part I.Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter
Oceanologia 2014, 56(3), 523-548
http://dx.doi.org/10.5697/oc.56-3.523
Anna Maciejewska,
Janusz Pempkowiak*
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: pempa@iopan.gda.pl
*corresponding author
keywords:
Deeps: Bornholm, Gdańsk, Gotland; ranges: seasonal, vertical; sources and sinks: primary production, bacterial decomposition, zooplankton, river run-off, inflows from North Sea
Received 14 November 2013, revised 21 January 2014, accepted 22 January 2014.
This study was supported by the Baltic-C/BONUS Plus EUFP6 Project, statutory activities of Institute of Oceanology PAN, Sopot and the Polish Ministry of Science and Higher Education, grant No. N N306 404338.
Abstract
Organic substances are important components of the marine environment as they determine the properties of seawater and the key biogeochemical processes taking place in it. Organic carbon (OC) is a measure of organic matter. For practical purposes, OC is divided into dissolved organic carbon (DOC) and particulate organic carbon (POC). Both DOC and POC play a major role in the carbon cycle, especially in shelf seas like the Baltic, where their concentrations are substantial. In a three-year study (2009-2011) seawater samples for DOC and POC measurements were collected from stations located in the Gdańsk Deep, the Gotland Deep and the Bornholm Deep. The accuracy and precision of analysis were satisfactory; the recovery was better than 95%, and the relative standard deviation was 4% (n = 5). Concentrations of chlorophyll a, phaeopigment a, salinity, pH and temperature were also measured in the same samples. These parameters were selected as proxies of processes contributing to DOC and POC abundance.
The aim of the study was to address questions regarding the vertical, horizontal and seasonaldynamics of both DOC and POC in the Baltic Sea and the factors influencing carbon concentrations. In general, the highest concentrations of both DOC and POC were recorded in the surface water layer (DOC ~4.7 mg dm-3, POC ~0.6 mg dm-3) as a consequence of intensive phytoplankton activity, and in the halocline layer (DOC ~5.1 mg dm-3, POC ~0.4 mg dm-3). The lowest DOC and POC concentrations were measured in the sub-halocline water layer, where the values did not exceed 3.5 mg dm-3 (DOC) and 0.1 mg dm-3 (POC). Seasonally, the highest DOC and POC concentrations were measured during the growing season: surface DOC ~5.0 mg dm-3; sub-halocline DOC ~4.1 mg dm-3 andsurface POC ~0.9 mg dm-3, sub-halocline POC ~0.2 mg dm-3. The ANOVA Kruskal-Wallis test results indicate statistically significant differences among the three study sites regarding average concentrations, and concentrations in particular water layers and seasons. It shows that concentrations of DOC and POC differ in sub-basins of the Baltic Sea. The differences were attributed to the varying distances from river mouths to study sites or the different starting times and/or durations of the spring algal blooms. Statistically significant dependences were found between both DOC and POC concentrations and Chl a (phytoplankton biomass), pH (phytoplankton photosynthetic rate), pheo (zooplankton sloppy feeding), salinity (river run-off and North Sea water inflows) and water temperature (season). This was taken as proof that these factors influence DOC and POC in the study areas.
References
Almroth-Rosell E., Eilola K., Hordoir R., Meier M.H. E, Hall P. O. J., 2011,
Transport of fresh and resuspended particulate organic material in the Baltic
Sea - a model study, J. Mar. Sys., 87 (1), 1-12,
http://dx.doi.org/10.1016/j.jmarsys.2011.02.005
Amann T., Weiss A., Hartmann J., 2012, Carbon dynamics in the freshwater part of
the Elbe estuary, Germany: Implications of improving water quality, Estuar.
Coast. Shelf Sci., 107, 112-121,
http://dx.doi.org/10.1016/j.ecss.2012.05.012
Andrulewicz E., Szymelfenig M., Urbański J., Węsławski J.M, 1998, Morze
Bałtyckie - o tym warto wiedzieć, Zesz. Zielonej Akad., 7, 1-115.
Bianchi T. S., Demetropoulos A., Hadjichristophorou M., Argyrou M., Baskaran
M., Lambert C., 1996, Plant pigments as biomarkers of organic matter sources
in sediments and coastal waters of Cyprus (eastern Mediterranean), Estuar.
Coast. Shelf Sci., 42, 103-115,
http://dx.doi.org/10.1006/ecss.1996.0008
Burska D., Pryputniewicz D., Falkowska L., 2005, Stratification of particulate
organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea),
Oceanologia, 47, 201-217.
Björck S., 1995, A review of the history of the Baltic Sea, 13.0-8.0 ka BP, Quater.
Int., 27, 19-40,
http://dx.doi.org/10.1016/1040-6182(94)00057-C
Chester R., 2003, Marine geochemistry, 2nd edn., Blackwell Sci., London, 506 pp.
Collos Y., Husseini-Ratrema J., Bec B., Vaquer A., Hoai T. L., Rougier C., Pons V.,
Souchu P., 2005, Phaeopigment dynamics, zooplankton grazing rates and the
autumnal ammonium peak in a Mediterranean lagoon, Hydrobiologia, 550 (1), 83-93,
http://dx.doi.org/10.1007/s10750-005-4365-1
Dera J., 1992, Marinephysics, Elsevier, Amsterdam, 515 pp.
Doney S. C., Linsay K., Moore J. K., 2003, Global ocean carbon cycle modeling, [in:]
Ocean biogeochemistry, M. J. R. Doney (ed.), Springer-Verlag, Berlin, 217-238.
DunalskaJ. A., GórniakD., Jaworska B., Geiser E. E., 2012, Effectof temperature
on organic matter transformationin a different ambient nutrient availability,
Ecol. Eng., 49, 27-34,
http://dx.doi.org/10.1016/j.ecoleng.2012.08.023
Dzierzbicka-Głowacka L.,
KulińskiK.,MaciejewskaA.,JakackiJ., Pempkowiak
J.,2011, Numericalmodelling of POC dynamicsinthe Balticunder possible
future conditionsdetermined by nutrients, light and temperature, Oceanologia,
53 (4), 971-992,
http://dx.doi.org/10.5697/oc.53-4.971
Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., PempkowiakJ., 2010, Particulate Organic
Carbonin the southern Baltic Sea:numerical simulations andexperimentaldata,Oceanologia,
52 (4),621-648,
http://dx.doi.org/10.5697/oc.52-4.621
EdmanM., Omstedt A., 2013, Modeling the dissolved CO
2 system in the redox environmentofthe
BalticSea,Limnol.Oceanogr.,58 (1),74-92,
http://dx.doi.org/10.4319/lo.2013.58.1.0074
Emelyanov E., 1995, Baltic Sea:geology, geochemistry, paleoceanography, pollution, P.P.Shirshov
Inst.Oceanol. RussianAcad. Sci., Kaliningrad, 119 pp.
EmersonS. R.,Hedges J. I., 2008, Chemicaloceanography and the marinecarbon cycle, Cambridge
Univ. Press, Cambridge, 453 pp.,
http://dx.doi.org/10.1017/CBO9780511793202
Ferrari G. M.,DowellM. D.,GrossiS.,Targa C.,1996,Relationship between the
optical properties of chromophoric dissolved organic matter and total concentrationofdissolved
organiccarbon inthe southernBalticSearegion, Mar. Chem.,55, 299-316,
http://dx.doi.org/10.1016/S0304-4203(96)00061-8
Gardner W. D.,MishonovaA. V.,Richardson M. J.,2006,GlobalPOC
concentrationsfrom in situ and satellite data, Deep-Sea Res. Pt. II, 53 (5-7),
718-740,
http://dx.doi.org/10.1016/j.dsr2.2006.01.029
GranskogM. A.,KaartokallioH.,Thomas D. N,KuosaH.,2005,Influence of freshwater
inflow on the inorganic nutrient and dissolved organic matter within coastalseaiceand
underlyingwatersintheGulfofFinland(Baltic Sea), Estuar. Coast.Shelf Sci., 65
(1-2), 109-122.
Grzybowski W., 2003, Aredata on light-induced ammonium release from dissolved organic matter
consistent?,Chemosphere, 52, 933-936,
http://dx.doi.org/10.1016/S0045-6535(03)00290-X
Grzybowski W., Pempkowiak J., 2003, Preliminaryresults on low molecular weight organic substances
dissolved in the waters of the Gulfof Gdańsk, Oceanologia,
45 (4), 693-704.
GustafssonE.,DeutschB.,GustafssonB. G.,HumborgC.,MörthC.-M.,2013, Carbon
cyclinginthe BalticSea-the fateofallochthonous organiccarbon and its impact on
air-sea CO
2 exchange, J. Marine Syst.,129, 289-302,
http://dx.doi.org/10.1016/j.jmarsys.2013.07.005
Hagström Å., Azam F., Kuparinen J., Zweifel U. L., 2001, Pelagic plankton growth and resource
limitations in the Baltic Sea, [in:] A systems analysis of the Baltic Sea,F. V. Wullf,L. A. Rahm
& P. Larsson (eds.),Ecol.Stud., 148, 177-210.
HakansonL.,1991,Charakterystykafizycznogeograficzna zlewiska Morza
Bałtyckiego, Środowisko Morza Bałtyckiego,1, 1-37.
Hedges J. I., 2002, Whydissolved organic matter,[in:] Biogeochemistryof marine dissolved
organicmatter,D. A. Hansell & C. A. Carlson(ed.),Elsevier Sci., San Diego, 1-33.
Hansell D. A, 2002, DOC in the Global Oceancarbon cycle, [in:] Biogeochemistryof marine
dissolved organic matter, D. A. Hansell &C. A. Carlson (eds), Elsevier Sci., San Diego, 685-715,
http://dx.doi.org/10.1016/B978-012323841-2/50017-8
The BACC Author Team, 2008, TheBALTEX Assessmentof Climate Changefor the BalticSea Basin,
Springer-Verlag, Berlin, 1-34.
HELCOM, 2005, Nutrient pollution to the BalticSea in 2000,BalticSea Environ.
Proc., 100, 24 pp.
HELCOM,2006, Developmentoftoolsforassessmentofeutrophicationinthe
BalticSea, BalticSea Environ. Proc., 104, 64 pp.
HELCOM, 2007, Climatechange in the BalticSea area, Baltic Sea Environ. Proc.,
111, 54 pp.
HoikkalaL.,LahtinenT., PerttilaM.,LignellR.,2012, Seasonaldynamicsof dissolved
organic matter ona costal salinitygradient inthe northernBaltic Sea,Cont. Shelf Res., 45,
1-45,
http://dx.doi.org/10.1016/j.csr.2012.04.008
IPCC, 2007, ClimateChangeSynthesisReport.Contributionof working groups I, II and IIIto
the Fourth AssessmentReport of the Intergovernmental Panel on ClimateChange,Cambridge Univ.
Press, Cambridge,73 pp.
JurkovskisA. K., FormychT. A.,Grotanie B. J., 1976, Ciklizmienienij fosfora, azota i
organiczeski sviazannogo uglieroda v BaltijskomMorie, Okieanologia, 16, 79-86.
KoutsT., OmstedtA., 1993, Deepwater exchange inBalticProper,TellusA,
45 (4),311-324.
http://dx.doi.org/10.1034/j.1600-0870.1993.t01-1-00006.x
Kuliński K., Pempkowiak
J., 2008, Dissolvedorganic carbon in the southern Baltic
Sea: Quantificationof factorsaffecting itsdistribution,Estuar.Coast.Shelf
Sci., 78 (1),38-44,
http://dx.doi.org/10.1016/j.ecss.2007.11.017
Kuliński K.,PempkowiakJ.,2011,The carbon budgetof the Baltic Sea,
Biogeosciences, 8,3219-3230,
http://dx.doi.org/10.5194/bg-8-3219-2011
KulińskiK., Schneider B., Hammer K., MachulikU., Schulz-BullD., 2014, The
influenceofdissolvedorganicmatterontheacid-basesystemoftheBaltic
Sea, J. Marine Syst., 132, 106-115,
http://dx.doi.org/10.1016/j.jmarsys.2014.01.011
Leipe T., TauberF., ValliusH., VirtasaloJ., Uścinowicz Sz.,Kowalski N.,Hille S., Lindgren
S., MyllyvirtaT., 2011, Particulateorganiccarbon(POC) in surfacesedimentsofthe
BalticSea,Geo-Mar. Lett.,31 (3),175-188,
http://dx.doi.org/10.1007/s00367-010-0223-x
LorentzC. J., 1967, Determinationofchlorophyll inpheo-pigments: spectropho-
tomatric equations,Limnol. Oceanogr., 12 (2), 343-346,
http://dx.doi.org/10.4319/lo.1967.12.2.0343
Maar M.,MollerE. F.,LarsenJ.,MadsenK. S.,Wan Z.,SheJ.,Jonasson L., Neumann
T., 2011, Ecosystemmodelling acrossa salinitygradient from theNorthSeatotheBaltic
Sea, Ecol.Model., 222 (10), 1696-1711,
http://dx.doi.org/10.1016/j.ecolmodel.2011.03.006
MaricD.,FrkaS.,Godrija J., TomazicI.,PenezicA.,DjakovacT., Vo jvodic V., Precali
R., GasparovicB., 2013, Organicmatter productionduringlate summerwinterperiodina
temperatesea, Cont.ShelfRes.,55 (1), 52-65,
http://dx.doi.org/10.1016/j.csr.2013.01.008
Meyer-Harms B., von Bodungen B.,1997, Taxon-specificingestion rates of natural phytoplankton by
calanoid copepods in an estuarine environment (Pomeranian Bight, Baltic Sea) determined by cell
counts and HPLC analyses of marker pigments, Mar. Ecol.-Prog.Ser., 153,181-190,
http://dx.doi.org/10.3354/meps153181
Omstedt A., Axell L. B., 2003, Modeling the variations of salinity and temperature inthelarge
Gulfs oftheBalticSea, Cont.ShelfRes.,23 (3-4), 265-294,
http://dx.doi.org/10.1016/S0278-4343(02)00207-8
OmstedtA., Humborg C., Pempkowiak J., PerttiläM., Rutgersson A., Schneider B.,SmithB.,
2012, BiogeochemicalcontrolofthecoupledCO
2-O
2system of the BalticSea:Areview of
the results of Baltic-C, AMBIO, 43, 49-53,
http://dx.doi.org/10.1007/s13280-013-0485-4
ParsonsT. R.,1969,Determination ofphotosyntheticpigmentsin sea-water.
Asurvey of methods,UNESCO, Paris, 69 pp.
Pempkowiak J.,1983, C
18reversed-phase trace enrichment of short- and long-chain
(C
2-C
8-C
20) fatty acids from dilute aqueous solutions and seawater, J.
ChromatographyA, 258, 93-102,
http://dx.doi.org/10.1016/S0021-9673(00)96401-X
Pempkowiak J., ChiffoleauJ.-F., Staniszewski A., 2000, Verticalandhorizontal distribution of
selected heavy metals in the southern Balticoff Poland, Estuar. Coastal Shelf Sci., 51 (1),115-125,
http://dx.doi.org/10.1006/ecss.2000.0641
Pempkowiak J., Walkusz-MiotkJ., Bełdowski J., Walkusz W., 2006, Heavy metals inzooplankton from
the SouthernBaltic,Chemosphere,62 (10),1697-1708,
http://dx.doi.org/10.1016/j.chemosphere.2005.06.056
Pempkowiak J., Widrowski M., KulińskiW., 1984, Dissolvedorganic carbon and particulate carbon
in the Southern Baltic in September, Proc. XIV Conf. Baltic Oceanogr., IMGW, Gdynia, 699-713.
Sarmiento J. L., Gruber N., 2006, Oceanbiogeochemical dynamics, Princeton Univ.
Press, New York, 526 pp.
Schneider B., Nausch G., Nagel K., WasmundN., 2003, Thesurfacewater CO
2 budget forthe
Baltic Proper:anewwaytodeterminenitrogenfixation, J. Marine Syst., 42 (1-2),
53-64.
Seager S. L.,SlabaughM. R.,2004, Chemistry fortoday: general,organic,and
biochemistry,Thomson Brooks/Cole, Bedmont, 342 pp.
Segar D. A., 2012, Introduction to ocean science, 3rd edn., 1st electr. edn., ver. 3.0. 525 pp.
StedmonC. A.,MarkagerS.,Tranvik L.,KronbergL.,Slätis T.,Martinsen W., 2007,
Photochemicalproduction of ammonium and transformationof dissolvedorganic matter inthe
BalticSea,Mar.Chem., 104 (3-4),227-240,
http://dx.doi.org/10.1016/j.marchem.2006.11.005
Stoń J., Kosakowska A., Łotocka M., Łysiak-Pastuszak E., 2002, Pigment composition in relation to
phytoplankton community structure and nutrient content in the BalticSea,Oceanologia, 44 (4), 419-437.
SzymczychaB., Maciejewska A., Winogradow A., Pempkowiak J., 2014, Could submarine groundwater
discharge be a significant carbon source to the southern BalticSea?, Oceanologia, 56 (2),327-347,
http://dx.doi.org/10.5697/oc.56-2.327
ThomasH., Schneider B., 1999, TheseasonalcycleofcarbondioxideinBaltic Sea surface
waters, J. Marine Syst., 22 (1), 53-67,
http://dx.doi.org/10.1016/S0924-7963(99)00030-5
Thomas H., Pempkowiak J., WullfF., Nagel K., 2003, Autotrophy,nitrogen accumulation and nitrogen
limitation in the BalticSea:a paradox or a buffer for eutrophication?,Geophys. Res. Lett., 30
(21), 2130 p.
Thomas H., Bozec Y., de Baar H. J. W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., Kattner
G., Borges A. V., 2005, Thecarbon budget ofthe NorthSea, Biogeosciences, 2, 87-96,
http://dx.doi.org/10.5194/bg-2-87-2005
Uścinowicz Sz., 2011, Geochemistry of BalticSeasurfacesediments,Polish Geol.
Inst. - Nat. Res. Inst., Warsaw, 356 pp.
Voipio A., 1981, TheBalticSea,Elsevier, Amsterdam,148 pp.
WåhlströmI., OmstedtA., BjörkG., Anderson L.G., 2012, Modellingthe CO
2 dynamicsinthe
LaptevSea,Arctic Ocean: PartI, J. Mar.Syst., 102-104, 29-38,
http://dx.doi.org/10.1016/j.jmarsys.2012.05.001
Wasmund N., Uhlig S., 2003, Phytoplankton trends in the BalticSea, J. Mar. Sci., 60, 177-186.
WitekZ.,OchockiS.,MaciejowskaM.,PastuszakM.,NakoniecznyJ., Podgórska B., Kownacka
J. M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its
utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk(southern Baltic),
Mar.Ecol.-Prog. Ser., 148, 169-186,
http://dx.doi.org/10.3354/meps148169
Wożniak S., 2014,Simple statistical formulas for estimating biogeochemical
propertiesofsuspendedparticulate matter inthe southernBalticSea potentially useful for
optical remote sensing applications,Oceanologia, 56 (1), 7-39,
http://dx.doi.org/10.5697/oc.56-1.007
Genetic characteristics of three Baltic Zostera marina populations
Oceanologia 2014, 56(3), 549-564
http://dx.doi.org/10.5697/oc.56-3.549
Magdalena Gonciarz1,*,
Józef Wiktor2,
Agnieszka Tatarek2,
Piotr Węgleński3,
Anna Stanković1,4,5
1Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw,
Pawińskiego 5a, 02-106 Warsaw, Poland;
e-mail: m.gonciarz@biol.uw.edu.pl
*corresponding author
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
3Centre of New Technologies, University of Warsaw,
Żwirki i Wigury 93, 02-089 Warsaw, Poland
4Institute of Bioechemistry and Biophysics, Polish Academy of Sciences,
Pawińskiego 5a, 02-106 Warsaw, Poland;
5The Antiquity of Southern Europe Research Centre, University of Warsaw,
Krakowskie Przedmieście 32, 00-927 Warsaw, Poland
keywords:
Baltic Sea, eelgrass, Zostera marina, microsatellites,
population genetics
Received 23 December 2013, revised 17 March 2014, accepted 20 March 2014.
This work was financially supported by the project: "ZOSTERA: Restoration of ecosystem key elements in the inner Puck Bay".
Abstract
We performed genetic analyses of three Baltic eelgrass (Zostera marina) populations in Puck Bay (PB), Cudema Bay (CB) and Greifswalder Bodden (GB). The aim of this study was to identify the eelgrass population genetically closest to that from the PB, which could potentially serve as a reservoir for the restoration of the underwater meadows in this bay, seriously degraded in the past. We applied a 12-microsatellite assay to test the genetic distance between the target eelgrass populations. We found that the allelic richness values of the GB, PB and CB populations were 2.25, 3.77 and 3.50 respectively. The genetic diversity found in GB was low and could be explained by the population's history, whereas the diversity of CB was higher than expected in a population located at the edge of the species' range. Analyses of genetic differentiation and structure showed that of the three populations studied, PB and CB were closer to each other than to the GB population. The reasons for this differentiation in eelgrass populations and the implications of the results of their genetic analysis on the planned restoration of the PB populations are discussed.
References
Andrulewicz E., 1997, An overview on lagoons in the Polish coastal area of the
Baltic Sea, Int. J. Salt Lake Res., 6 (2), 121-134,
http://dx.doi.org/10.1007/BF02441889
Arnaud-Haond S., Belkhir K., 2007, GENCLONE: a computer program to analyse
genotypic data, test for clonality and describe spatial clonal organization, Mol.
Ecol. Notes, 7 (1), 15-17,
http://dx.doi.org/10.1111/j.1471-8286.2006.01522.x
Balloux F., Lugon-Moulin N., 2002, The estimation of population differentiation
with microsatellite markers, Mol. Ecol., 11 (3), 155-165,
http://dx.doi.org/10.1046/j.0962-1083.2001.01436.x
Baden S., Bostrom C., Tobiasson S., Arponen H., Moksnes P.O., 2010, Relative
importance of trophic interactions and nutrient enrichment in seagrass
ecosystem: A broad-scale field experiment in the Baltic-Skagerrak area, Limnol.
Oceanogr., 55 (3), 1435-1448,
http://dx.doi.org/10.4319/lo.2010.55.3.1435
Baden S., Gullstrom M., Lunden B., Pihl L., Rosenberg R., 2003, Vanishing
seagrass (
Zostera marina, L.) in Swedish coastal waters, Ambio, 32(5), 374-377.
Brookfield J. F., 1996, A simple new method for estimating null allele frequency
from heterozygote deficiency, Mol. Ecol., 5 (3), 453-455,
http://dx.doi.org/10.1046/j.1365-294X.1996.00098.x
Busch K.E., Golden R. R., Parham T.A., Karrh L.P., Lewandowski M. J., Naylor
M.D., 2010, Large-scale
Zostera marina (eelgrass) restoration in Chesapeake
Bay, Maryland, USA. part I: A comparison of techniques and associated costs,
Restor. Ecol., 18 (4), 490-500,
http://dx.doi.org/10.1111/j.1526-100X.2010.00690.x
CampanellaJ. J., Bologna P. A. X., Smalley J. V., AvilaD. N.,Lee K. N.,Areche
E. C., SlavinL. J., 2012, Ananalysisofthepopulationgeneticsofrestored
Zosteramarinaplantingsin BarnegatBay,New Jersey, Popul.Ecol.,55 (1),
121-133,
http://dx.doi.org/10.1007/s10144-012-0351-4
Campanella J. J., Bologna P. A., Smalley J. V., Rosenzweig E. B., Smith S. M., 2010, Population
structureof
Zosteramarina(eelgrass)ontheWestern Atlantic Coast is characterizedby
poor connectivity and inbreeding,J. Hered., 101 (1), 61-70,
http://dx.doi.org/10.1093/jhered/esp103
Cornuet J. M., LuikartG., 1996, Descriptionand power analysisof two testsfor detecting
recentpopulationbottlenecksfromallele frequencydata,Genetics,
144 (4),2001-2014.
DiekmannO. E., Serrao E. A., 2012, Range-edgegeneticdiversity: Locallypoor extant
southern patches maintain a regionally diverse hotspot in the seagrass
Zosteramarina,Mol.
Ecol.,21 (7),1647-1657,
http://dx.doi.org/10.1111/j.1365-294X.2012.05500.x
Dorken M. E., Eckert C. G., 2001, Severely reduced sexual reproductionin northern populationsof
aclonalplant,Decodonverticillatus (Lythraceae),J. Ecol., 89 (3),339-350,
http://dx.doi.org/10.1046/j.1365-2745.2001.00558.x
EarlD. A., von HoldtB. M., 2012, STRUCTURE HARVESTER:Awebsite and programforvisualizing
STRUCTURE outputandimplementing the Evanno method,Conserv. Genet.Resour.,4 (2),359-361,
http://dx.doi.org/10.1007/s12686-011-9548-7
EvannoG., RegnautS.,Goudet J., 2005, Detectingthe numberof clustersof individuals
using the software STRUCTURE: A simulationstudy, Mol. Ecol.,
14 (8),2611-2620,
http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x
ExcofferL., LavalG.,
Schneider S., 2005, Arlequin(version3.0):Anintegrated
software packageforpopulation genetics dataanalysis, Evol. Bioinform.
Online,1 (2),47-50.
Excoffer L., Smouse P. E., QuattroJ. M., 1992, Analysisofmolecularvariance inferred from
metric distances among DNA haplotypes. Applicationto human mitochondrialDNArestriction data,
Genetics, 131 (2),479-491.
Fonseca M. S., Kenworthy W. J.,Thayer G. W.,1998, Guidelines for the conservation
andrestorationof seagrassesintheunitedstatesandadjacent waters,NOAACoastal
OceanProgr.Decis.No.12, NOAACoastal Ocean Office, Silver Spring, 222 pp.
Frederiksen M.,Krause-JensenD.,HolmerM.,LaursenJ. S., 2004, Long-term changesinarea
distribution ofeelgrass (
Zosteramarina)inDanishcoastal waters, Aquat. Bot.,78 (2),167-181,
http://dx.doi.org/10.1016/j.aquabot.2003.10.002
GoudetJ., 1995, FSTAT (version 1.2):Acomputer programtocalculateF-statistics, J.
Hered., 86 (6),485-486.
Guo S. W.,Thompson E. A., 1992, Performingthe exacttestof Hardy-Weinberg proportionfor
multiple alleles, Biometrics, 48 (2), 361-372,
http://dx.doi.org/10.2307/2532296
HalkettF.,SimonJ. C.,BallouxF.,2005,Tacklingthepopulationgeneticsof clonal
andpartiallyclonalorganisms,Trends Ecol.Evol.,20 (4),194-201,
http://dx.doi.org/10.1016/j.tree.2005.01.001
HarwellM. C., Orth R. J., 2002,Long-distance dispersal potentialin ama- rine
macrophyte,Ecology, 83 (12), 3319-3330,
http://dx.doi.org/10.1890/0012-9658(2002)083[3319:LDDPIA]2.0.CO;2
HämmerliA.,ReuschT. B. H.,2003, Inbreedingdepressionin?uencesgenet size distribution
ina marineangiosperm, Mol. Ecol., 12 (3),619-629,
http://dx.doi.org/10.1046/j.1365-294X.2003.01766.x
Hizon-FradejasA. B., Nakano Y.,Nakai S.,Nishijima W., Okada M.,2009, Anchorage
and resistance to uprooting forces of eelgrass (
Zostera marina L.) shoots planted in slag
substrate, JSWE, 7 (2), 91-101.
Jakobsson M., Rosenberg N. A., 2007, CLUMPP:A cluster matching and permutation
program for dealing with label switching and multimodality in analysisofpopulationstructure,
Bioinformatics,23 (14),1801-1806,
http://dx.doi.org/10.1093/bioinformatics/btm233
Kalendar R.,Lee D.,SchulmanA. H.,2011, Javaweb toolsforPCR, insilico PCR, and
oligonucleotide assembly and analysis,Genomics,98 (2),137-144,
http://dx.doi.org/10.1016/j.ygeno.2011.04.009
KamelS. J.,HughesA. R.,GrosbergR. K.,StachowiczJ. J., 2012,Fine-scale genetic
structure and relatednessinthe eelgrass
Zosteramarina, Mar.Ecol. Prog. Ser., 447 (13),
127-137,
http://dx.doi.org/10.3354/meps09447
Moksnes P. O.,GullstromM., KentarooT.,BadenS., 2008, Trophiccascadesin the temperate
seagrass community, Oikos, 117 (5), 763-777,
http://dx.doi.org/10.1111/j.0030-1299.2008.16521.x
Muniz-SalazarR., TalbotS. L., SageG. K., Ward D. H., Cabello-PasiniA.,
2005,Populationgeneticstructureofannualandperennialpopulationsof
Zostera marina
L.alongthePacificcoast of Baja Californiaand the GulfofCalifornia,Mol.
Ecol.,14 (3),711-722,
http://dx.doi.org/10.1111/j.1365-294X.2005.02454.x
MunkesB.,2005, Eutrophication,phase shift,the delay and the potential return inthe
GreifswalderBodden,BalticSea,Aquat.Sci.,67 (3),372-381,
http://dx.doi.org/10.1007/s00027-005-0761-x
OlsenJ. L.,Stam W. T., CoyerJ. A.,ReuschT. B.,Billingham M.,Bostrom C.,
Wyllie-Echeverria S., 2004, North Atlanticphylogeography and large-scale population
differentiation of the seagrass
Zostera marina L., Mol. Ecol., 13 (7),
1923-1941,
http://dx.doi.org/10.1111/j.1365-294X.2004.02205.x
Ort B. S., Cohen S., Boyer K. E., Wyllie-Eccheverria S., 2012, Population structure and genetic
diversity among eelgrass (
Zosteramarina) beds and depths in San FranciscoBay, J. Hered., 103
(4), 533-546,
http://dx.doi.org/10.1093/jhered/ess022
Orth R. J.,Carruthers T. J. B., Dennison W. C., Duarte C. M., Fourqurean
J. W.,HeckK. L.,HughesA. R.,WilliamsS. L.,2006,A global crisis for
seagrass ecosystems,Bioscience, 56 (12), 987-996,
http://dx.doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2
Peakall R., Smouse P. E., 2012, GenAlEx6.5: Genetic analysis in Excel. Population genetic
software for teaching and research - an update, Bioinformatics, 28 (19), 2537-2539,
http://dx.doi.org/10.1093/bioinformatics/bts460
Peterson B. J.,BrickerE.,BrisbinS. J.,Furman B. T., Stubler A. D.,Carroll J. M.,
WaycottM., 2013, Geneticdiversityand gene flow in
Zosteramarina populations surrounding
Long Island, NewYork,USA: No evidence of inbreeding,genetic degradationor
populationisolation,Aquat.Bot.,110 (10), 61-66,
http://dx.doi.org/10.1016/j.aquabot.2013.05.003
Pritchard J. K., Stephens M., DonnellyP.,2000, Inferenceof populationstructure using
multilocusgenotype data, Genetics,155 (2), 945-959.
Reusch T. B., 2000a, Five microsatelliteloci in eelgrass
Zosteramarinaand a test of
cross-speciesamplification inZ.noltiiandZ.japonica,Mol. Ecol.,9 (3), 371-373,
http://dx.doi.org/10.1046/j.1365-294x.2000.00874-4.x
ReuschT. B., 2000b, Pollinationin the marinerealm:Microsatellitesreveal high outcrossing
rates and multiplepaternityin eelgrass Zosteramarina,Heredity,
85 (5), 459-464,
http://dx.doi.org/10.1046/j.1365-2540.2000.00783.x
ReuschT. B., 2002, Microsatellitesreveal high populationconnectivity in eelgrass
(
Zosteramarina)in two contrastingcoastal areas, Limnol. Oceanogr.,47 (1),
78-85,
http://dx.doi.org/10.4319/lo.2002.47.1.0078
Reusch T. B., Stam W. T., Olsen J. L., 1999, Microsatelliteloci in eelgrass Zostera marina reveal
marked polymorphismwithin and among populations, Mol. Ecol., 8 (2), 317-321,
http://dx.doi.org/10.1046/j.1365-294X.1999.00531.x
ReynoldsL. K.,WaycottM.,McGlatheryK. J., OrthR. J.,ZiemanJ. C.,2012, Eelgrass
restoration byseedmaintainsgeneticdiversity:Casestudyfrom a coastal bay system,
Mar.Ecol. Prog.Ser.,448 (2),223-233,
http://dx.doi.org/10.3354/meps09386
Rosenberg N. A., 2004,DISTRUCT:A program forthegraphicaldisplayof population
structure,Mol. Ecol. Notes,4 (1),137-138,
http://dx.doi.org/10.1046/j.1471-8286.2003.00566.x
RoussetF.,2008,Genepop’007: Acompletere-implementationoftheGenepop softwarefor
WindowsandLinux,Mol. Ecol.Resour.,8 (1),103-106,
http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
Salm R. V., ClarkJ.,Siirila E., 2000, Marineand coastal protectedareas:a guide for
plannersand managers,IUCN, Washington DC, 371 pp.
SambrookJ.,Russell D. W., 2006, Purification of nucleicacids by extractionwith
phenol:chloroform,CSH Protoc.,
http://dx.doi.org/10.1101/pdb.prot4455
Short F. T.,PolidoroB., LivingstoneS. R., Carpenter K. E., BandeiraS., Bujang J. S., Zieman
J. C.,2011, Extinction riskassessmentof theworld’s seagrass species, Biol. Conserv.,144
(7), 1961-1971.
Tanner C., Hunter S., Reel J.,Parham T.,Naylor M., KarrhL., Schenk E., 2010,
Evaluatinga large-scaleeelgrassrestoration projectintheChesapeakeBay,
Restor.Ecol.,18 (4),538-548,
http://dx.doi.org/10.1111/j.1526-100X.2010.00694.x
van Katwijk M. M., Bos A. R., de Jonge V. N., Hanssen L. S., Hermus D. C., de Jong D. J., 2009,
Guidelinesfor seagrass restoration:Importance of habitat selection and donorpopulation,
spreading ofrisks,and ecosystemengineeringeffects, Mar.Pollut. Bull.,58 (2),179-188,
http://dx.doi.org/10.1016/j.marpolbul.2008.09.028
VanOosterhout C.,WilliamF.,HutchinsonD. P.,WillsM.,ShipleyP.,2004, Micro-
checker: Softwareforidentifyingandcorrectinggenotyping errors in microsatellite data,
Mol. Ecol. Notes, 4 (3), 535-538,
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Waycott M., DuarteC. M., Carruthers T. J., OrthR. J., Dennison W. C., Olyarnik S.,Williams
S. L.,2009,Accelerating lossofseagrassesacross theglobe threatens coastal
ecosystems, P. Natl.Acad. Sci. USA, 106 (30), 12377-12381,
http://dx.doi.org/10.1073/pnas.0905620106
Węsławski J. M., Kryla-Straszewska L., Piwowarczyk J., UrbańskiJ., WarzochaJ., Kotwicki L.,
Wiktor J., 2013, Habitat modelling limitations - Puck Bay, Baltic Sea - a case study, Oceanologia,
55 (1),167-183,
http://dx.doi.org/10.5697/oc.55-1.167
WęsławskiJ. M.,Warzocha J., Wiktor J., UrbańskiJ.,Bradtke K.,KrylaL., Piwowarczyk
J., 2009, Biological valorisation of the southern Baltic Sea (Polish exclusive economiczone),
Oceanologia, 51 (3), 415-435,
http://dx.doi.org/10.5697/oc.51-3.415
Importance of bacteria and protozooplankton for faecal pellet degradation
Oceanologia 2014, 56(3), 565-581
http://dx.doi.org/10.5697/oc.56-3.565
Nathalie Morata1,2,*,
Lena Seuthe1
1Department of Arctic and Marine Biology, University of Tromsø,
N-9037 Tromsø, Norway
2Lemar CNRS UMR 6539,
Rue Dumont D'Urville, 29280 Plouzané, France;
e-mail: nathalie.morata@gmail.com
*corresponding author
keywords:
Carbon demand, carbon flux, respiration, faecal pellet, Calanus
Received 12 August 2013, revised 03 February 2014, accepted 04 February 2014.
This work is a contribution to the Arctos Network and Conflux project.
Abstract
The degradation mechanisms of faecal pellets are still poorly understood, although they determine their contribution to vertical fluxes of carbon. The aim of this study was to attempt to understand the microbial (bacteria and protozooplankton) degradation of faecal pellets by measuring the faecal pellet carbon-specific degradation rate (FP-CSD) as an indicator of pellet degradation. "In situ" and "culture" pellets (provided by the grazing of copepods in in situ water and in a culture of Rhodomonas sp. respectively) were incubated in seawater from the chlorophyll a maximum and 90 m depth, and in filtered seawater. When microbes were abundant (at the chlorophyll a maximum), they significantly increased FP-CSD. In addition, culture pellets had a higher FP-CSD than in situ pellets, suggesting that the results obtained with culture pellets should be treated with caution when trying to extrapolate to natural field conditions.
References
ArrigoK.,vanDijkenG.,PabiS., 2008, Impactof a shrinkingArcticicecover
onmarineprimaryproduction,Geophys.Res.Lett., 35 (19),L19603,
http://dx.doi.org/10.1029/2008GL035028
Błachowiak-Samołyk K., Soreide J. E., Kwaśniewski S., Sundfjord A., Hop H., Falk- PetersenS.,
HegsethE. N.,2008, Hydrodynamic controlof mesozooplankton abundanceandbiomassin
northernSvalbardwaters,Deep-SeaRes.Pt.II,
55 (20-21), 2210-2224,
http://dx.doi.org/10.1016/j.dsr2.2008.05.018
BromsC.,Melle W.,Kaartvedt S.,2009, Oceanicdistribution andlifecycleof Calanus
speciesintheNorwegianSeaandadjacentwaters,Deep-SeaRes. Pt. II, 56, 1910-1921,
http://dx.doi.org/10.1016/j.dsr2.2008.11.005
Calbert A., LandryM. R., 2004, Phytoplankton growth, microzooplankton grazing, andcarbon
cyclinginmarine systems, Limnol.Oceanogr., 49 (1), 51-67,
http://dx.doi.org/10.4319/lo.2004.49.1.0051
CarrollM. L., CarrollJ.,2003, TheArcticSeas,[in:]Biogeochemistryof marine
systems, K. D. Black & G. B. Shimmield (eds.),Blackwell Publ.,Oxford, 126-156.
CheckleyD. M. J.,Entzeroth L. C.,1985, Elementaland isotopicfractionationof carbon and
nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle, J. Plankton
Res., 7 (4), 533-568,
http://dx.doi.org/10.1093/plankt/7.4.553
CimblerisA. C. P.,KalfJ.,1998, Planktonicbacterial respirationasafunction ofC:N:P
ratiosacrosstemperatelakes,Hydrobiologia, 384 (1-3),89-100,
http://dx.doi.org/10.1023/A:1003496815969
Conover R., 1988, Comparativelife histories in the genera Calanus and Neocalanus in high
latitudes of the Northern Hemisphere, Hydrobiologia,167-168 (1), 127-142,
http://dx.doi.org/10.1007/BF00026299
DaggM. J., Walser W. E. J.,1986,The effectoffoodconcentration onfecal pellet
sizeinmarinecopepods,Limnol.Oceanogr.,31 (5),1066-1071,
http://dx.doi.org/10.4319/lo.1986.31.5.1066
DalyK. L.,1997,Fluxofparticulatematterthrough copepodsintheNortheast Water
Polynya, J. Marine Syst., 10 (1-4), 319-342,
http://dx.doi.org/10.1016/S0924-7963(96)00062-0
Froneman P. W., PerissinottoR., 1996,Microzooplanktongrazingand
protozooplanktoncommunity structure in theSouth Atlantic andin the Atlantic
sectorof the SouthernOcean,Deep-SeaRes. Pt. I, 43 (5),703-721,
http://dx.doi.org/10.1016/0967-0637(96)00010-6
Fukami K., Simidu U., Taga N., 1981,Fluctuation of thecommunities of
heterotrophicbacteriaduringthedecomposition process ofphytoplankton, J. Exp. Mar.
Biol.Ecol., 55 (2-3), 171-184,
http://dx.doi.org/10.1016/0022-0981(81)90110-6
GowingM. M.,SilverM. V.,1983,Origins andmicroenvironment ofbacteria mediating
fecalpellet decompositioninthe sea, Mar.Biol.,73, 15-23,
http://dx.doi.org/10.1007/BF00396280
Halvorsen E., Tande K. S., Edvardsen A., Slagstad D., Pedersen O. P., 2003, Habitat selection of
overwintering
Calanus finmarchicus in the NENorwegian Sea and shelf waters off Northern Norway in
2000-02, Fish. Oceanogr.,12 (4-5), 339-351,
http://dx.doi.org/10.1046/j.1365-2419.2003.00255.x
HansenB., Bech G.,1996, Bacteriaassociatedwith a marineplanktonic copepod inculture.
1.Bacterialgenera inseawater, body surface,intestinesand fecal pellets and succession
during fecal pellet degradation, J. Plankton Res., 18 (2), 257-273,
http://dx.doi.org/10.1093/plankt/18.2.257
HansenB., FotelF. L., Jensen N. J., MadsenS. D., 1996, Bacteriaassociated with a marine
planktonic copepod in culture. 2. Degradation of fecal pellets produced on a diatom,a
nanoflagellate or a dinoflagellate diet, J. Plankton Res., 18 (2), 275-288,
http://dx.doi.org/10.1093/plankt/18.2.275
HansenA. S., Nielsen T. G.,LevinsenH., MadsenS. D., Thingstad T. F.,Hansen
B. W., 2003, Impact of changing ice cover on pelagic productivity and food web
structurein Disko Bay, WestGreenland:a dynamicmodel approach, Deep-Sea
Res. Pt. I, 50 (2), 171-187,
http://dx.doi.org/10.1016/S0967-0637(02)00133-4
Hirche H. J.,Mumm
N., 1992, Distributionof Dominant Copepods in the Nansen
Basin,Arctic-Ocean, in Summer, Deep-Sea Res. Pt. I, 39 (2 Pt. 1), S485-S505,
http://dx.doi.org/10.1016/S0198-0149(06)80017-8
HircheH. J., 1991,Distribution ofdominant calanoidcopepodspeciesinthe
GreenlandSea duringlate fall, PolarBiol., 11 (6),11-17,
http://dx.doi.org/10.1007/BF00239687
Honjo S., Roman M. R.,1978, Marine copepod fecal pellets: production,
preservationand sedimentation, J. Marine Syst., 36, 45-57.
IversenM. H.,PoulsenL. K.,2007,Coprorhexy, coprophagy,andcoprochalyin the
copepods
Calanushelgolandicus,
Pseudocalanus elongatus,and
Oithona similis,Mar.
Ecol.-Prog.Ser.,350,79-89,
http://dx.doi.org/10.3354/meps07095
JacobsenT. R.,Azam F.,1984, Role of bacteria in copepod fecal pellet
decomposition: colonization,growth rates and mineralization, Bull. Mar. Sci.,
35, 495-502.
LalandeC.,Bauerfeind E.,NöthigE. M.,2011,Downwardparticulate organic carbon
export at high temporal resolutionin the eastern Fram Strait:influence of Atlantic Wateron flux
composition, Mar. Ecol.-Prog. Ser., 440, 127-136,
http://dx.doi.org/10.3354/meps09385
LampittR. S.,No jiT.,vonBodungenB.,1990,Whathappenstozooplankton faecal
pellets? Implications formaterialflux,Mar.Biol.,104, 15-23,
http://dx.doi.org/10.1007/BF01313152
Lane P. V. Z., Smith S. L., Biscay P. E., 1994, Carbon flux and recycling associated with
zooplanktonfecal pellets on the shell of the MiddleAtlanticBight,Deep Sea Res. Pt. II, 41,437-457,
http://dx.doi.org/10.1016/0967-0645(94)90031-0
LevinsenH.,Turner J. T.,NielsenT. G.,HansenB. W.,2000,Onthetrophic coupling
between protists and copepods in arctic marine ecosystems,Mar. Ecol.- Prog. Ser., 204, 65-77,
http://dx.doi.org/10.3354/meps204065
MadsenS.,NielsenT., HansenB.,2001,Annual populationdevelopment and production
by Calanusfinmarchicus,
C. glacialis and
C. hyperboreus in Disko Bay, western Greenland, Mar.
Biol., 139, 75-93,
http://dx.doi.org/10.1007/s002270100552
MüllerE. F., Thor P., NielsenT. G., 2003,Production ofDOCby
Calanus
finmarchicus,
C.glacialisand
C.hyperboreusthroughsloppyfeedingand leakage from
fecal pellets, Mar. Ecol.-Prog.Ser., 262, 185-191,
http://dx.doi.org/10.3354/meps262185
No ji T. T.,1991, Theinfluenceof macrozooplankton onverticalparticulateflux, Sarsia, 76,1-9.
No ji T. T.,ReyF.,MillerL. A.,BorsheimK. Y.,Urban-Rich J.,1999, Fateof biogenic
carbonintheupper200 mof thecentralGreenlandSea,Deep-Sea Res. Pt. II, 46, 1497-1509,
http://dx.doi.org/10.1016/S0967-0645(99)00032-6
OlliK., WassmannP., ReigstadM., RatkovaT. N., ArashkevichE.,Pasternak A., MatraP. A.,
KnulstJ., TranvikL., KlaisR., JacobsenA., 2007, The fate of production in the central
ArcticOcean - top-down regulation by zooplankton expatriates?,Prog.Oceanogr.,72, 84-113,
http://dx.doi.org/10.1016/j.pocean.2006.08.002
Olli K., Wexels Riser C., Wassmann P., Ratkova T., Arashkevich E., Pasternak A.,
2002, Seasonalvariationinverticalfluxofbiogenicmatter inthe marginal icezoneand
thecentralBarentsSea,J. MarineSyst.,38,189-204,
http://dx.doi.org/10.1016/S0924-7963(02)00177-X
Olsen S. N., WesthP., Hansen B. W., 2005, Real-timequantification of microbial degradation of
copepod fecal pellets monitored by isothermal microcalorimetry, Aquat. Microb. Ecol., 40,
259-267,
http://dx.doi.org/10.3354/ame040259
PaffenhöferG.-A., Knowles S. C., 1979, Ecologicalimplicationsof fecal pellet size, production
and consumptionby copepods,J. Marine Syst., 37, 35-49.
PetersenG. H., Curtis M. A., 1980, Differences inenergyflowthroughmajor components
ofsubarctic, temperateandtropicalmarine shelfecosystems, Dana, 1, 53-64.
PilskalnC. H., Honjo S., 1987, Thefecal pellet fractionof biogeochemical particle fluxesto
the deep-sea,Glob. Biogeoch.Cy., 1,31-48,
http://dx.doi.org/10.1029/GB001i001p00031
PlougH.,Iversen M. H.,KoskiM., BuitenhuisE. T., 2008, Production,oxygen respiration
rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal
and calcite, Limnol. Oceanogr., 53 (2), 469-476,
http://dx.doi.org/10.4319/lo.2008.53.2.0469
Porter K. G., Feig Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora,
Limnol.Oceanogr., 25 (5),943-948,
http://dx.doi.org/10.4319/lo.1980.25.5.0943
Poulsen L. K., Iversen M. H., 2008, Degradationof copepod fecal pellets:key role of
protozooplankton,Mar.Ecol.-Progr.Ser.,367, 1-13,
http://dx.doi.org/10.3354/meps07611
Poulsen L. K., Kiorboe T., 2006, Verticalfluxanddegradation ratesofcopepod fecal pellets
ina zooplankton communitydominatedby small copepods,Mar. Ecol.-Prog. Ser., 323, 195-204,
http://dx.doi.org/10.3354/meps323195
ReigstadM.,Wexels-RiserC., Svensen C., 2005, Fateofcopepodfaecalpellets andthe
roleofOithona spp.,Mar. Ecol.-Prog.Ser., 304,265-270,
http://dx.doi.org/10.3354/meps304265
RenaudP. E., RiedelA., MichelC., MorataN., Gosselin M., Juul-PedersenT., Chiuchiolo A.,
2007, Seasonal variation in benthic community oxygen demand: A responsetoanicealgal bloom
intheBeaufortSea, Canadian Arctic?, J. Marine Syst., 67 (1-2),1-12,
http://dx.doi.org/10.1016/j.jmarsys.2006.07.006
Rivkin R. B., Legendre L., 2001, Biogeniccarbon cycling in the upper ocean:effects of microbial
respiration, Science, 291 (5512), 2398-2400,
http://dx.doi.org/10.1126/science.291.5512.2398
Roy S., PouletS. A., 1990, Laboratory study of the chemical compositionof aging copepod fecal
material, J. Exp. Biol. Ecol., 135 (1), 3-18,
http://dx.doi.org/10.1016/0022-0981(90)90195-I
Seuthe L., Rokkan Iversen K., Narcy F., 2011, Microbial processes in a high-latitude fjord
(Kongsfjorden,Svalbard): II. Ciliates anddinoflagellates, PolarBiol., 34 (5), 751-766,
http://dx.doi.org/10.1007/s00300-010-0930-9
ShinadaA., IkedaT.,TsudaA., 2001, Seasonalvariationand spatial distribution of phyto-
and protozooplankton inthe central BarentsSea, J. Plankton Res.,
23 (11), 1237-1247,
http://dx.doi.org/10.1093/plankt/23.11.1237
Shek L., Liu H., 2010, Oxygenconsumptionrates of fecal pellets produced by three coastal
copepodspeciesfedwithadiatomThalassiosira pseudonana,Mar. Pollut.Bull.,60 (7),1005-1009,
http://dx.doi.org/10.1016/j.marpolbul.2010.02.001
Sherr E. B., Sherr B. F., WheelerP. A., ThompsonK., 2003, Temporaland spatial variationin
stocksofautotrophicandheterotrophicmicrobesintheupper water column of the central
ArcticOcean, Deep-Sea Res. Pt. I, 50 (5), 557-571,
http://dx.doi.org/10.1016/S0967-0637(03)00031-1
Slagstad D.,Tande K. S.,1990,Growthandproductiondynamics ofCalanus glacialis in
an arctic pelagic food web, Mar. Ecol.-Prog.Ser., 63, 189-199,
http://dx.doi.org/10.3354/meps063189
Small L. F.,LandryM. R.,EppleyR. W.,AzamF.,CarlucciA. F.,1989, Roleof plankton
in the carbon and nitrogen budgets of Santa Monica Basin, California, Mar. Ecol.-Prog. Ser., 56,57-74,
http://dx.doi.org/10.3354/meps056057
SoreideJ. E.,Falk-PetersenS.,HegsethE. N.,HopH.,CarrollM. L.,Hobson K. A.,
Błachowiak-Samołyk K., 2008, Seasonal feeding strategies of Calanus in the high-ArcticSvalbard
region, Deep Sea Res. Pt. II, 55 (20-21), 2225-2244,
http://dx.doi.org/10.1016/j.dsr2.2008.05.024
Svensen C., Wexels Riser C., ReigstadM., Seuthe L., 2012, Degradation of copepod faecal pellets:
role of microbial community and Calanus finmarchichus, Mar. Ecol.-Prog.Ser., 462, 39-49,
http://dx.doi.org/10.3354/meps09808
SwiftJ. H.,Aagaard K.,1981,Seasonaltransitionsandwater massformation in the
Iceland and Greenland Sea, Deep-Sea Res. Pt. I, 28, 1107-1129,
http://dx.doi.org/10.1016/0198-0149(81)90050-9
Tang K., 2005,Copepods asmicrobialhotspotsintheocean:effectsofhost feeding
activities on attached bacteria, Aquat.Microbiol. Ecol., 38, 31-40,
http://dx.doi.org/10.3354/ame038031
TangK., Dzillas C., Hutalle-Schmelzer K., Grossart H. P., 2009, Effectsof food on bacterial
communitycompositionassociatedwith thecopepodAcartiatonsa Dana,Biol.Letters,5,
549-553,
http://dx.doi.org/10.1098/rsbl.2009.0076
Takahashi K., Nagao N., TaguchiS., 2002, Respirationof adult female Calanus hyperboreus
(Copepoda) duringspringintheNorthWaterPolynya, Polar Biosci., 15, 45-51.
Thor P., DamH.,RogersD. R., 2003,Fate oforganiccarbonreleasedfrom
decomposingcopepodfecalpelletsin relation tobacterialproduction and
ectoenzymaticactivity,Aquat.Microb.Ecol.,33 (3),279-288,
http://dx.doi.org/10.3354/ame033279
Turner J. T.,1979, Microbialattachment to copepod faecal pellets and its possible significance,
T. Am. Microsc. Soc., 98 (1), 131-135,
http://dx.doi.org/10.2307/3225949
Turner J. T.,2002,Zooplanktonfecal pellets, marinesnow and sinking
phytoplankton blooms, Aquat.Microb.Ecol.,27, 57-102,
http://dx.doi.org/10.3354/ame027057
Urban-Rich J., 1999, Releaseof dissolved organic carbon from copepod fecal pellets in the
GreenlandSea, J. Exp. Biol. Ecol., 232, 107-124,
http://dx.doi.org/10.1016/S0022-0981(98)00104-X
Urban-Rich J.,NordbyE.,Andreassen I. J.,Wassmann P.,1999,Contribution by
mesozooplankton fecal pellets to the carbon flux on Nordvestbanken, north Norwegian shelf in 1994,
Sarsia, 84, 253-264.
Urban J. L., Deibel D., SchwinghamerP., 1993, Seasonal variations in the densities of fecal
pellets produced by Oikopleura vanhoeffeni (C. Larvacea)and
Calanus finmarchicus(C. Copepoda),
Mar.Biol., 117, 607-613,
http://dx.doi.org/10.1007/BF00349772
UrrèreM. A.,Knauer G. A.,1981,Zooplanktonfecalpelletfluxesandvertical transport
ofparticulate organic material inthe pelagic environment, J. PlanktonRes.,3, 369-387,
http://dx.doi.org/10.1093/plankt/3.3.369
von BodungenB.,AntiaA.,BauerfeindE.,HauptO.,Koeve W.,MachadoE., Peeken I.,
Peinert R., ReitmeierS., ThomsenC., Voss M., WunschM., Zeller U., Zeitzschel B., 1995,
Pelagic processes and vertical flux of particles:an overview of a long-term comparative study in
the Norwegian Sea and Greenland Sea,Geol.Rundsch., 84 (1),11-27,
http://dx.doi.org/10.1007/BF00192239
vonBodungen B.,Fischer G., NöthigE. M.,WeferG., 1987,Sedimentation ofkrill
faeces duringspring developmentof phytoplanktonin Bransfield Strait,Antarctica,
Mitt. Geol. Palaönt. Inst.Univ. Hamburg,SCOPE/UNEP Sonderbd.,62, 243-257.
Wassmann P., ReigstadM., Haug T., Rudels B., Carroll M. L., Hop H., Gabrielsen G. W.,
Falk-Petersen S., Denisenko S. G., Arashkevich E., Slagstad D., Pavlova O., 2006, Foodwebs and
carbon flux in the BarentsSea, Prog. Oceanogr.,71, 232-287,
http://dx.doi.org/10.1016/j.pocean.2006.10.003
Wassmann P., Hansen L., AndreassenI., Wexels Riser C., Urban-Rich J., 1999, Distribution and
sedimentation of faecal pellets on the Nordvestbanken shelf, northern Norway,in 1994, Sarsia, 84, 239-252.
WexelsRiserC., WassmannP., Reigstad M.,SeutheL.,2008,Vertical flux regulation
by zooplankton inthe northernBarentsSeaduring Arcticspring, Deep-SeaRes.Pt. II,55,2320-2329,
http://dx.doi.org/10.1016/j.dsr2.2008.05.006
WiebeP. H., MadinL. P.,HauryL. R.,HarbisonG. R.,PhilbinL. M., 1979, Diel vertical
migration by Salpa aspera and its potential for large-scale particulate organicmatter transport tothedeep-sea, Mar.Biol.,53,249-255,
http://dx.doi.org/10.1007/BF00952433
Yang E. J., Ju S. J., Choi J. K., 2010, Feeding strategy of the copepod Acartiahongi on
phytoplanktonand micro-zooplankton in Gyeonggi Bay, Yellow Sea, Estuar. Coast.ShelfSci.,88
(2),292-301,
http://dx.doi.org/10.1016/j.ecss.2010.04.005
ZhangJ., RothrockD. A.,SteeleM.,1998,WarmingoftheArctic Oceanby a
strengthenedAtlantic inflow: Modelresults,Geophys.Res.Lett.,25 (10), 1745-1748,
http://dx.doi.org/10.1029/98GL01299
Short-term variation in zooplankton community from Daya Bay with outbreaks of Penilia avirostris
Oceanologia 2014, 56(3), 583-602
http://dx.doi.org/10.5697/oc.56-3.583
Kaizhi Li1,
Jianqiang Yin1,
Yehui Tan1,
Liangmin Huang1,
Xingyu Song1,2,3,*
1Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou 510301, China
2Marine Biology Research Station at Daya Bay,
Shenzhen 518121, China
3South China Sea Institute of Oceanology, Chinese Academy of Sciences,
164 West Xingang Road, Guangzhou, Guangdong 510301, China;
e-mail: songxy@scsio.ac.cn
*corresponding author
keywords:
Zooplankton, Penilia avirostris, nuclear power station, aquaculture, Daya Bay, Dapeng Cove
Received 11 April 2013, revised 10 February 2014, accepted 19 March 2014.
This research was supported by the Knowledge Innovation Program of the ChineseAcademy of Sciences (SQ201307), the Public Science and Technology Research Funds Projects of Ocean (No. 201305030) and the National Natural Science Foundation of China (No. 41276159, 31101619, 41130855 and 41276161).
Abstract
The zooplankton community structure in bays fluctuates as a result of anthropogenic activities in such waters. We focused on the short-term variability of a zooplankton community and compared its differences at the outflow of a nuclear power plant (ONPP), in a marine cage-culture area (MCCA) and in unpolluted waters (UW) in the south-west part of Daya Bay from 28 April to 1 June 2001. Environmental factors and zooplankton abundance differed significantly among stations at ONPP, MCCA and UW: high temperatures and a high zooplankton abundance occurred at ONPP, while a high chlorophyll a concentration and a low zooplankton abundance prevailed in MCCA. Statistical analysis revealed that the zooplankton diversity and abundance could be reduced by the activity of the marine cage-culture in a short time. Penilia avirostris made up an important component of the zooplankton in the study area, its abundance ranging widely from 16 to 7267 indiv. m-3 from April to June and peaking at the ONPP outflow. The outbreak of P. avirostris probably resulted from the combined effects of favourable water temperature, food concentration and its parthenogenetic behaviour.
References
AtienzaD.,Saiz E.,CalbetA.,2006, Feedingecologyofthemarinecladoceran Penilia
avirostris: natural diet,prey selectivityand daily ration, Mar.Ecol.- Prog. Ser., 315, 211-220,
http://dx.doi.org/10.3354/meps315211
Cai B. J., 1990, Abundance of Cladocerain Daya Bay, [in:] Collectionsof papers on marine
ecology in the DayaBay, ThirdInst.Oceanogr.StateOcean.Admin. (eds.),Ocean Press,
Beijing, 369-373, (in Chinese with English abstract).
Chang K. H.,Amano A.,MillerT. W., IsobeT., Maneja R., Siringan F. P., Imai
H.,NakanoS.,2009,PollutionstudyinManilaBay:eutrophication and its impact
on plankton community, [in:]Interdisciplinarystudies onenvironmental
chemistry-environmental researchinAsia, Y.Obayashi, T. Isobe, A. Subramanian, S. Suzuki &
S. Tanabe (eds.),TERRAPUB., 261-267.
Chen Q. C., Zhang S. Z., 1965, Theplanktonic copepods of the YellowSea and the
EastChinaSea I, Calanoida,Stud. Mar. Sinica, 7, 20-131, (in Chinese).
Clarke K. R., Gorley R. N., 2006, PRIMER v6. User Manual/Tutorial, PRIMER-E, Plymouth.
CornelG. E., WhoriskeyF. G.,1993, Theeffectsof rainbow trout (Oncorhynchus mykiss) cage
culture on the water quality,zooplankton,benthos and sediments of Lacdu Passage,Quebec,
Aquaculture, 109 (2), 101-117,
http://dx.doi.org/10.1016/0044-8486(93)90208-G
GoreM. A.,1980,FeedingexperimentsonPenilia avirostrisDana(Cladocera: Crustacea),
J. Exp.Mar.Biol. Ecol.,44 (2),263-260,
http://dx.doi.org/10.1016/0022-0981(80)90156-2
Grahame J., 1976, Zooplanktonof a tropical harbour:the numbers,composition, and response
to physical factors of zooplankton in Kingston Harbour, Jamaica,J. Exp. Mar. Biol.
Ecol., 25 (3), 219-237,
http://dx.doi.org/10.1016/0022-0981(76)90125-8
HuangH., Lin Q., WangW.,Jia X., 2005, Impactof cage fish farming on water environmentin
DayaBay,SouthChinaFish.Sci., 1 (3),9-17, (in Chinese).
JohnsD. G.,EdwardsM., GreveW.,John A. W. G.,2005, Increasingprevalence of the
marine cladoceran
Penilia avirostris (Dana,1852)in theNorth Sea, Helgoland
Mar. Res., 59 (3),214-218,
http://dx.doi.org/10.1007/s10152-005-0221-y
Katechakis A., Stibor H., 2004, Feeding selectivities of the marine cladocerans
Penilia avirostris,
Podon intermedius and
Evadne nordmanni, Mar. Biol.,
145 (3), 529-539,
http://dx.doi.org/10.1007/s00227-004-1347-1
Kim S.W., Onbé T., Yoon Y.H., 1989, Feeding habits of marine cladocerans in the
Inland Sea of Japan, Mar. Biol., 100 (3), 313-318, http://dx.doi.org/10.1007/
BF00391145
Li T., Liu S., Huang L.M., Huang H., Lian J. S., Yan Y., Lin S. J., 2011, Diatom to
dinoflagellate shift in the summer phytoplankton community in a bay impacted
by nuclear power plant thermal effluent, Mar. Ecol.-Prog. Ser., 424, 75-85,
http://dx.doi.org/10.3354/meps08974
Li K. Z., Yin J. Q., Huang L.M., Song X.Y., 2012, Comparison of siphonophore
distributions during the southwest and northeast monsoons on the northwest
continental shelf of the South China Sea, J. Plankton Res., 34 (7), 636-641,
http://dx.doi.org/10.1093/plankt/fbs035
Lian G. S., Cai B. J., Lin Y.H., Lin M., Dai Y.Y., Lin J.H., 1990, Distribution of
biomass and density of zooplankton in Daya Bay, [in:] Collections on papers on
marine ecology in the Daya Bay, Beijing, Third Inst. Oceanogr. State Ocean.
Admin. (eds.), Ocean Press, 221-231, (in Chinese).
Lipej L., Mozetic P., Turk V., Malej A., 1997, The trophic role of the marine
cladoceran
Penilia avirostris in the Gulf of Trieste, Hydrobiologia, 360 (1-3), 197-203,
http://dx.doi.org/10.1023/A:1003180030116
Marazzo A., Valentin J.L., 2001, Spatial and temporal variations of Penilia
avirostris and Evadne tergestina (Crustacea, Branchiopoda) in a tropical
Bay, Brazil, Hydrobiologia, 445 (1-3), 133-139,
http://dx.doi.org/10.1023/A:1017592323388
Marazzo A., Valentin J. L., 2004, Reproductive aspects of marine cladocerans
Penilia avirostris and
Pseudevadne tergestina (Crustacea, Branchiopoda) in
the outer part of Guanabara Bay, Brazil, Brazil J. Biol., 64 (3A), 543-549.
Miyashita L.K., Pompeu M., Gaeta S.A., Lopes R.M., 2010, Seasonal contrasts
in abundance and reproductive parameters of
Penilia avirostris (Cladocera,
Ctenopoda) in a coastal subtropical area, Mar. Biol., 157 (11), 2511-2519,
http://dx.doi.org/10.1007/s00227-010-1515-4
Oviatt C., Lane P., French III F., Donaghay P., 1989, Phytoplankton species
and abundance in response to eutrophication in coastal marine mesocosms,
J. Plankton Res., 11 (6), 1223-1244,
http://dx.doi.org/10.1093/plankt/11.6.1223
Park G. S., Marshall H.G., 2000, Estuarine relationships between zooplankton
community structure and trophic gradients, J. Plankton Res., 22 (1), 121-135,
http://dx.doi.org/10.1093/plankt/22.1.121
Parsons T.R., Maita Y., Lalli C.M., 1984, A manual of chemical and biological
methods for seawater analyses, Pergamon Press, Oxford, 173 pp.
Rose K., Roff J.C., Horcroft R.R., 2004, Production of
Penilia avirostris in
Kingston Harbour, Jamaica, J. Plankton Res., 26 (6), 605-615,
http://dx.doi.org/10.1093/plankt/fbh059
Shen S.P., Chen X.M., Li C.P., Yin J.Q., 1999, Distribution of zooplankton in
the southwest waters of Daya Bay, [in:] Research on marine system of Daya
Bay, Beijing, Mar. Biol. Res. Station, South China Sea Inst. Oceanol. Chinese
Acad. Sci. (eds.), China Meteor. Press, 73-95, (in Chinese).
Song X. Y., Huang L. M., Zhang J. L., Huang X.P., Zhang J. B., Yin J.Q.,
Tan Y.H., Liu S., 2004, Variation of phytoplankton biomass and primary
production in Daya Bay during spring and summer, Mar. Pollut. Bull., 49 (11-12), 1036-1044,
http://dx.doi.org/10.1016/j.marpolbul.2004.07.008
Spatharis S., Tsirtsis G., Danielidis D. B., Chi T.D., Mouillo D., 2007, Effects
of pulsed nutrient inputs on phytoplankton assemblage structure and blooms
in an enclosed coastal area, Estuar. Coast. Shelf Sci., 73 (3-4), 807-815,
http://dx.doi.org/10.1016/j.ecss.2007.03.016
Tang D. L., Kester D.R., Wang Z., Lian J., Kawamura H., 2003, AVHRR satellite
remote sensing and shipboard measurements of the thermal plume from the
Daya Bay, nuclear power station, China, Remote Sens. Environ., 84 (4), 506-515,
http://dx.doi.org/10.1016/S0034-4257(02)00149-9
Tseng L.C., Dahms H.U., Hung J. J., Chen Q.C., Hwang J. S., 2011, Can different
mesh sizes affect the results of copepod community studies?, J. Exp. Mar. Biol.
Ecol., 398 (1-2), 47-55,
http://dx.doi.org/10.1016/j.jembe.2010.12.007
Uye S., 1994, Replacement of large copepods by small ones with eutrophication
of embayments: cause and consequence, Hydrobiologia, 292-293(1), 513-519,
http://dx.doi.org/10.1007/BF00229979
Uye S., Nagano N., Shimazu T., 1998, Biomass, production and trophic roles
of micro- and net-zooplankton in Dokai inlet, a heavily eutrophic inlet, in
summer, Plankton Biol. Ecol., 45 (2), 171-182.
Wang Y. S., Lou Z.P., Sun C.C., Song S., 2008, Ecological environmental changes
in Daya Bay, from 1982 to 2004, Mar. Pollut. Bull., 56 (11), 1871-1879,
http://dx.doi.org/10.1016/j.marpolbul.2008.07.017
Wang Y. S., Lou Z.P., Sun C. C., Wang H. L., Mitchell B. G., Wu M. L., Deng
C., 2012, Identification of water quality and zooplankton characteristics in
Daya Bay, China, from 2001 to 2004, Environ. Earth Sci., 66, 655-671,
http://dx.doi.org/10.1007/s12665-011-1274-7
Wang Y. S., Lou Z.P., Sun C.C., Wu M. L., Han S.H., 2006, Multivariate statistical
analysis of water quality and phytoplankton characteristics in Daya Bay,
China, from 1999 to 2002, Oceanologia, 48 (2), 193-211.
Wang W., Lu M., Huang S., 1996, Analysis on relationships between total
generation rate of oxygen and biological environment in Daya Bay, Acta
Oceanol. Sinica, 18 (2), 57-65.
Wang Z.H., Zhao J.G., Zhang Y. J., Yu C., 2009, Phytoplankton community
structure and environmental parameters in aquaculture areas of Daya Bay,
South China Sea, J. Environ. Sci., 21 (9), 1268-1275,
http://dx.doi.org/10.1016/S1001-0742(08)62414-6
Wong C. K., Chan A. L.C., Tang K.W., 1992, Natural ingestion rates and grazing
impact of the marine cladoceran
Penilia avirostris Dana in Tolo Harbour,
Hong Kong, J. Plankton Res., 14 (12), 1757-1765,
http://dx.doi.org/10.1093/plankt/14.12.1757
Wu M. L., Wang Y. S., 2007, Using chemometrics to evaluate anthropogenic effects
in Daya Bay, China, Estuar. Coast. Shelf Sci., 72 (4), 732-742,
http://dx.doi.org/10.1016/j.ecss.2006.11.032
Wu M.L., Wang Y.S., Sun C.C., Wang H.L., Dong J.D., Yin J.P., Han S.H.,
2010, Identification of coastal water quality by statistical analysis methods
in Daya Bay, South China Sea, Mar. Pollut. Bull., 60 (6), 852-860,
http://dx.doi.org/10.1016/j.marpolbul.2010.01.007
Xu G. Z., 1989, Environments and resources of Daya Bay, Anhui Sci. Tech. Publ.,
HeFei, (in Chinese).
Xu Z. L., Chen Y.Q., 1989, Aggregated intensity of dominant species of zooplankton
in autumn in the East China Sea and Yellow Sea, J. Ecol., 8, 13-15, (in
Chinese).
Yin J.Q., Huang L.M., Li K. Z., Lian S.M., Li C. L., Lin Q., 2011, Abundance
distribution and seasonal variations of Calanus sinicus (Copepoda: Calanoida)
in the northwest continental shelf of South China Sea, Cont. Shelf Res., 31 (14), 1447-1456,
http://dx.doi.org/10.1016/j.csr.2011.06.010
Zaitsev Y.P., 1992, Recent changes in the trophic structure of the Black Sea,
Fish. Oceanogr., 1 (2), 180-189,
http://dx.doi.org/10.1111/j.1365-2419.1992.tb00036.x
Zheng Z., Li S. J., Xu Z. Z., 1984, Marine planktology, China Ocean Press, Beijing,
(in Chinese).
Benthic non-indigenous species among indigenous species and their habitat preferences in Puck Bay (southern Baltic Sea)
Oceanologia 2014, 56(3), 603-628
http://dx.doi.org/10.5697/oc.56-3.603
Urszula Janas*,
Halina Kendzierska
Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: oceuj@ug.gda.pl
*corresponding author
keywords:
non-indigenous species, Baltic Sea, Puck Bay, Gammarus tigrinus,Marenzelleria spp.
Received 24 June 2013, revised 08 January 2014, accepted 17 February 2014.
This work was carried out under the "Ecosystem Approach to Marine Spatial Planning – Polish Marine Areas and the Natura 2000 Network" project founded by an EEA grant from Iceland, Lichtenstein and Norway and partly by research grant BW/G 220-5-0232-9.
Abstract
To date 11 non-indigenous benthic taxa have been reported in Puck Bay (southern Baltic Sea). Five of the 34 taxa forming the soft bottom communities are regarded as non-indigenous to this area. They are Marenzelleria spp., Mya arenaria, Potamopyrgus antipodarum, Gammarus tigrinus and Amphibalanus improvisus. Non-indigenous species comprised up to 33% of the total number of identified macrofaunal taxa (mean 17%). The average proportion of aliens was 6% (max 46%) in the total abundance of macrofauna, and 10% (max 65%) in the biomass. A significant positiverelationship was found between the numbers of native taxa and non-indigenous species. The number of native taxa was significantly higher on a sea bed covered with vascular plants than on an unvegetated one, but no such relationship was found for their abundance. No significant differences were found in the number and abundance of non-indigenous species between sea beds devoid of vegetation and those covered with vascular plants, Chara spp. or mats of filamentous algae. G. tigrinus preferred a sea bed with vegetation, whereas Marenzelleria spp. decidedly preferred one without vegetation.
References
Baltic Sea Alien Species Database, 2010, Integrat. Informat. Syst. AquaNISPro ject, S. Olenin, D.
Daunys,E. Leppäkoski & A. Zaiko (eds.),
http://www.corpi.ku. lt/nemo/, [accessed 16 August2010].
Bick A., Burckhardt R., 1989, Erstnachweisvon Marenzelleriaviridis (Polychaeta, Spionidae)
fürden Ostseeraum, miteinemBestimmungsschlüssel der SpionidenderOstsee,
Mitt.Zool.Mus.Berlin,65, 237-247,
http://dx.doi.org/10.1002/mmnz.19890650208
Blank M.,LaineA. O.,Jürss K.,BastropT.,2008,Molecularidentification key based
on PCR/RFLPfor three polychaete sibling species of the genusMarenzelleria,
andthespecies’ current distribution in theBaltic Sea, Helgoland Mar.Res.,
62 (2),129-141,
http://dx.doi.org/10.1007/s10152-007-0081-8
Bonsdorff E., 2006, Zoobenthicdiversity-gradients inthe BalticSea:Continuous post glacial
succession in a stressed ecosystem, J. Exp. Mar. Biol. Ecol.,330 (1), 383-391,
http://dx.doi.org/10.1016/j.jembe.2005.12.041
Boström C.,BonsdorffE.,1997,Communitystructure andspatialvariation ofbenthic
invertebrates associated withZostera marina (L.) bedsinthe northern BalticSea,
J. SeaRes.,37,153-166,
http://dx.doi.org/10.1016/S1385-1101(96)00007-X
Daunys D.,Zettler M. L., 2006,Invasion oftheNorth Americanamphipod Gammarus
tigrinusSexton, 1939intoCuronian Lagoon, southern-eastern BalticSea,Acta Zool.
Lithuan., 16 (1), 20-26,
http://dx.doi.org/10.1080/13921657.2006.10512705
Dobrzycka-Krahel A., Rzemykowska H., 2010, Firstrecords of Ponto-Caspian gammaridsin the Gulf
of Gdańsk(southernBalticSea), Oceanologia, 52 (4), 727-735,
http://dx.doi.org/10.5697/oc.52-4.727
DziubińskaA.,2011a,Mytilopsisleucophaeata,an aliendreissenidbivalve discoveredin
the Gulf of Gdańsk(southernBalticSea),Oceanologia,53 (2), 651-655,
http://dx.doi.org/10.5697/oc.53-2.651
DziubińskaA., 2011b, Tempo i kierunek sukcesji zespołów bentosowych w strefie przybrzeżnej Zatoki
Gdańskiej,Ph.D.thesis,GdańskUniv.,Gdynia,1-171, (in Polish).
Dziubińska A.,Janas U.,2007,Submergedobjects-aniceplacetoliveand develop.
Successionof fouling communitiesinthe Gulf of Gdańsk, Southern Baltic,Oceanol.Hydrobiol.
Stud.,36 (4),65-78,
http://dx.doi.org/10.2478/v10009-007-0026-1
Ezhova E., Spirido O., 2005, Patterns of spatial and temporal distribution of the Marenzelleria
cf.viridispopulation in the lagoon and marine environmentin the southeastern BalticSea,
Oceanol. Hydrobiol.Stud.,Suppl.1, 209-226.
Ezhova E., Żmudziński L., Maciejewska K., 2005, Long-term trends in the macrozoobenthos ofthe
VistulaLagoon,southernBalticSea.Species compositionand biomass distribution, Bull. Sea
Fisher.Inst.,1 (164), 54-73.
GrabowskiM., 2006, Rapidcolonizationof the PolishBalticcoast by an Atlantic palaemonid
shrimpPalaemonelegans Rathke,1837, Aquat.Invasions,1 (3), 116-123,
http://dx.doi.org/10.3391/ai.2006.1.3.3
Grabowski M., Konopacka A., Jażdżewski K., JanowskaE., 2006, Native gammarid species in
retreatandinvasion of aliens in theVistulaLagoon (Baltic Sea,Poland),Helgol.
Mar.Res.,60 (2),90-97,
http://dx.doi.org/10.1007/s10152-006-0025-8
Gray J. S., 1997, Marinebiodiversity:patterns,threats and conservation
needs, Biodivers. Conserv.,6 (1), 153-175,
http://dx.doi.org/10.1023/A:1018335901847
GruszkaP., 1991, Marenzelleria viridis(Verrill,1873) (Polychaeta-Spionidae) - a new
componentofshallow water benthic communityinthe SouthernBaltic, Acta Ichthyol. Piscat.,
21, 57-65.
Gruszka P.,2002,Gammarus tigrinus(Sexton, 1939)(Crustacea, Amphipoda)
-anewspeciesinthePuckBay(southernBaltic),Abstr. 4thEuropean
Crustacean Conf., 22-26 July2002, Univ. Łodź, 40-41.
GruszkaP.,WięcaszekB., 2004, Palaemonelegans as food for cod inthe Gulf of Gdańsk, [in:]
Book of abstracts, Baltic - the Sea of Aliens,25-27 August2004, Gdynia,27 pp.
GrzelakK.,KuklińskiP.,2010, Benthicassemblages associatedwith rocksina brackish
environmentofsouthernBalticSea,J. MarineAssoc. UK,90 (01), 115-124,
http://dx.doi.org/10.1017/S0025315409991378
Herkül K., Kotta J., Kotta I., Orav-Kotta H., 2006, E?ectsof physical disturbance, isolation and
key macrozoobenthic species on community development, recolonisationand sedimentation processes,
Oceanologia, 48 (S), 267-282.
JanasU., Zarzycki T.,Kozik P.,2004a, Palaemonelegans - a new component of the Gulf of
Gdańskmacrofauna, Oceanologia, 46 (1), 143-146.
Janas U., Wocial J., Szaniawska A., 2004b, Seasonal and annual changes in the macrozoobenthic
populations of the Gulfof Gdańskwith respect to hypoxia and hydrogen sulphide, Oceanologia, 46
(1), 85-102.
JanasU.,WysockiP.,2005, Hemimysis anomalaG. O. Sars,1907 (Crustacea, Mysidacea)-
first record in the Gulf of Gdańsk, Oceanologia, 47 (3), 405-408.
JażdżewskiK.,KonopackaA.,GrabowskiM.,2004,Recentdrasticchangesin thegammarid
fauna(Crustacea, Amphipoda) oftheVistulaRiver deltaic systeminPolandcausedby
alieninvaders,Divers.Distrib., 10 (2),81-87,
http://dx.doi.org/10.1111/j.1366-9516.2004.00062.x
Jażdżewski K., Konopacka A., Grabowski M., 2005, Native and alien malacostracan Crustaceaalong
the PolishBalticSea coast in the twentieth century, Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 175-193.
JensenK. R., KnudsenJ.,2005, Asummary of alien marine benthic invertebrates in Danish
waters, Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 137-162.
Kelleher B., Bergers P. J. M., van der Brink F. W. B., Giller P. S., van der Velde G., bij de Vaate
A., 1998, Effectof exotic amphipod invasionson fish diet inthe lower Rhine,Archiv
Hydrobiol.,143 (3), 363-382.
Kotta J.,Orav H., Sandberg-Kilpi E.,2001, Ecologicalconsequence of the introduction of the
polychaete Marenzelleria cf. viridis into a shallow-water biotopeofthenorthernBaltic Sea,
J. SeaRes.,46 (3-4),273-280,
http://dx.doi.org/10.1016/S1385-1101(01)00088-0
Kotta J., Ólafsson E., 2003, Competitionfor food between the introduced polychaete Marenzelleria
viridis (Verrill) and the native amphipod Monoporeia affnis LindströmintheBalticSea,J.
SeaRes.,50 (1),27-35,
http://dx.doi.org/10.1016/S1385-1101(03)00041-8
Kotta J.,LauringsonV., MartinG.,Simm M., Kotta I., HerkülK.,OjaveerH.,
2008, Gulfof Rigaand PärnuBay,[in:]Ecologyof Balticcoastal water, U. Schiewer (ed.),
Ecol. Stud. No. 197. Springer-Verlag, Berlin, Heidelberg,217-243.
Kotwicki L., 1997, Macrozoobenthos of sandy littoral zone of the Gulfof Gdańsk, Oceanologia, 39
(4), 447-460.
KotwickiL., BaczewskaA.,JanasU.,Kra jczyk J., SztyborK.,WęsławskiJ.M., KędraM.,
2009,IncreasedhumanimpactontalitridsonthePolish coast,
5th Int. Symp. SandyBeaches SandyBeachesand coastal zone management,
19th-23rdOctober2009, Rabat, Morocco.
Kotwicki S., Miłostek A., Szymelfenig M., Witkowski A., Wołowicz M., 1993, Struktura idynamika
zespołów bentosu w strefie brzegowej ZatokiPuckiejw rejonieoczyszczalni ścieków w Swarzewie,
Arch.OchronyŚrodow., 3-4, 133-154.
Kruk-Dowgiałło L., Brzeska P., BłeńskaM., Opioła R., Kuliński M., Osowiecki A.,
2009, Czy ochrona brzegów niszczy siedliska denne?Studium przypadku - progi podwodne w Gdyni
Orłowie,polska inżynieria środowiska pięćlat po wstąpieniu do UniiEuropejskiej,[in:]
MonografieKomitetu InżynieriiŚrodowiska PAN, M. Dudzińska& L. Pawłowski(eds.),60 (3),
125-136.
LegeżyńskaE., WiktorK., 1981, FaunadennaZatokiPuckiej właściwej, Zesz.
Nauk. Wydz.BiNoZUG, 8, 63-77.
LeppäkoskiE.,Gollasch S.,Gruszka P.,OjaveerH., OleninS., PanovV., 2002,
TheBaltic-aseaofinvaders,Can. J. Aquat. Sci.,59,1175-1188,
http://dx.doi.org/10.1139/f02-089
Levine J. M., 2000, Speciesdiversityand biological invasions,relating local process to
communitypattern, Science,288 (5467), 852-854,
http://dx.doi.org/10.1126/science.288.5467.852
Levine J. M., D’AntonioC. M., 1999, Eltonrevisited,a review of evidencelinking diversity
andinvisibility, Oikos, 87 (1), 15-26,
http://dx.doi.org/10.2307/3546992
MacNeil C.,Dick J. T., ElwoodR. W.,1999,The dynamic ofpredationon
Gammarus spp. (Crustacea:Amphipoda), Biol. Rev., 74,375-395,
http://dx.doi.org/10.1017/S0006323199005368
MaximovA. A.,2011, Largescaleinvasion ofMarenzelleriaspp.(Polychaeta, Spionidae)
intheEastern GulfofFinland, Baltic Sea, RussianJ. Biol. Invasions, 2 (1),11-19,
http://dx.doi.org/10.1134/S2075111711010036
Nehring S., 2002,Biological invasionsinto German waters: an evolution of the
importance of different human-mediated vectors for nonindigenous macrozoobenthic species, [in:]
Invasive species in Europe:distribution, impacts and management, E. Leppäkoski, S. Gollasch & S. Olenin (eds.), Kluwer Acad.
Publ., Dordrecht, 373-393.
NorkkoA.,BonsdorffE.,1996, Population responsesofcoastalzoobenthosto stress
induced by drifting algal mats, Mar.Ecol.-Prog. Ser., 140, 141-151,
http://dx.doi.org/10.3354/meps140141
Norkko A., Bonsdorff E., Norkko A., 2000, Driftingalgal mats as an alternative habitatfor
benthic invertebrates,Species specific responses to transient resource, J. Exp. Mar.
Biol. Ecol., 248 (1), 79-104,
http://dx.doi.org/10.1016/S0022-0981(00)00155-6
Norkko J., Reed D. C., Timmermann K., Norkko A., GustafssonB. G., Bonsdor? E., Slomp C. P.,
Carstensen J., Conley D. J., 2012, Awelcome can of worms? Hypoxiamitigation by an invasive
species,Global Change Biol., 18 (2),422-434,
http://dx.doi.org/10.1111/j.1365-2486.2011.02513.x
NormantM.,Chrobak M.,SkóraK., 2002, TheChinesemittencrabEriocheir sinensis- an
immigrant from Asiain the Gulfof Gdańsk, Oceanologia, 44 (1), 123-125.
NowackiJ., 1993, Termika, zasolenieigęstość wody, [in:] ZatokaPucka, K.
Korzeniewski (ed.),Inst.Oceanogr. UG, 79-11.
Olenin S.,Leppäkoski E., 1999, Non-nativeanimals in the Baltic Sea:alteration of benthic
habitats in coastal inlets and lagoons,Hydrobiologia, 393 (0),233-243
http://dx.doi.org/10.1023/A:1003511003766
OleninS., MinchinD., DaunysD., 2007, Assessment ofbiopollutioninaquatic ecosystems,
Mar.Pollut.Bull.,55 (7-9),379-394,
http://dx.doi.org/10.1016/j.marpolbul.2007.01.010
Orav-KottaH., KottaJ.,Herkül K., KottaI., Paalme T., 2009,Seasonal
variability in the grazing potential of the invasive amphipod Gammarustigrinus and the native
amphipod Gammarussalinus (Amphipoda:Crustacea)in the northernBalticSea,Biol.
Invasions,11 (3),597-608,
http://dx.doi.org/10.1007/s10530-008-9274-6
OrlovaM. I., TeleshI. V., BerezinaN. A., MaximovA. A., Litvinchuk L. F.,2006, E?ectof
nonindigenousspeciesondiversityandcommunityfunctioningin the easternGulfof
Finland(BalticSea),Helgol. Mar.Res.,60 (2),98-105,
http://dx.doi.org/10.1007/s10152-006-0026-7
PaavolaM., Olenin S., Leppäkoski E., 2005, Areinvasive species most successful in habitats of
low native speciesrichnessacrossEuropeanbrackish water seas?, Estuar. CoastalShelf Sci.,
64 (4),738-750,
http://dx.doi.org/10.1016/j.ecss.2005.03.021
PackalénA.,KorpinenS., LehtonenK. K.,2008, Theinvasiveamphipod species Gammarus
tigrinus(Sexton1939)canrapidlychangelittoralcommunities inthe Gulf ofFinland
(BalticSea),Aquat.Invasions,3 (4),405-412,
http://dx.doi.org/10.3391/ai.2008.3.4.5
Pihl L., 1986, Exposure, vegetation and sediment as primary factors for mobile epibenthic faunal
communitystructure and production in shallow marine soft bottom areas,Neth.J.SeaRes.,20
(1),75-83,
http://dx.doi.org/10.1016/0077-7579(86)90063-3
Pyšek P., Jarošik V., Kučera T., 2002,Patterns of invasion in temperate
naturereserves,Biol.Conserv., 104 (1),13-24,
http://dx.doi.org/10.1016/S0006-3207(01)00150-1
Reise K., Olenin S., Thieltges D. W., 2006, Arealiens threatening European aquatic coastal
ecosystems?,Helgol. Mar.Res.,60 (2),72-83,
http://dx.doi.org/10.1007/s10152-006-0024-9
RudinskayaL. V.,GusevA. A.,2012,Invasion oftheNorthAmerican bivalve mollusk
RangiacuneatatotheVistulaLagoon, BalticSea,Russ.J.Biol. Invasions,2, 115-128,
(in Russianwith English summary).
Sax D. F.,2002, Nativeand naturalized plant diversityare positivelycorrelated in scrub
communitiesofCalifornia and Chile, Divers.Distrib., 8 (4),193-210,
http://dx.doi.org/10.1046/j.1472-4642.2002.00147.x
Schiewer U., 2008, Darss-Zingst Boddens,Northern RügenerBoddensand Schlei, [in:] Ecologyof
Balticcoastal water, U. Schiewer (ed.),Ecol. Stud., Vol. 197, Springer-Verlag,
Berlin-Heidelberg, 35-86.
Sikorski A. V.,Bick A.,2004,Revision of
MarenzelleriaMesnil, 1896
(Spionidae,Polychaeta), Sarsia, 89,253-275.
Smoła Z., 2012, Struktura zespołów makrozoobentosowych w rejonie projektowanego morskiego rezerwatu
przyrody Kępa Redłowska, M.Sc. thesis,GdańskUniv., Gdynia.
Spicer J., JanasU., 2006, Thebeachflea
Platorchestiaplatensis(Kroyer, 1845):
a new addition to the Polish fauna (with a key to Baltic talitrid amphipods), Oceanologia, 48 (2),287-295.
Stachowicz J. I., WitlatchR. B., Osman R. W., 1999, Species diversityand invasion resistance
in a marineecosystem,Science, 286 (5444),1577-1579,
http://dx.doi.org/10.1126/science.286.5444.1577
Streftaris N., Zenetos A., Papathanassiou E., 2005, Globalizationin marine ecosystems:The story
of non-indigenous marinespecies across Europeanseas, Oceanogr. Marine Biol., Ann. Rev.No. 43,
419-453.
SurowiecJ.,Dobrzycka-Krahel A.,2008,New data on the non-indigenous gammaridsin
the VistulaDelta and the VistulaLagoon,Oceanologia, 50 (3), 443-447.
Szaniawska A., Normant M., Łapucki T., 2003, Theinvasiveamphipod
Gammarus tigrinusSexton,
1939, in Puck Bay, Oceanologia, 45, 507-510.
Szaniawska A., Normant M., ŁapuckiT., 2005, Gammarus tigrinusSexton1939 (Crustacea,
Amphipoda) - a new immigrant in the Puck Bay,southernBaltic Sea, Oceanol. Hydrobiol. Stud., 34, 71-78.
Warzocha J., Gromisz S., Woźniczka A., Koper M., 2005, Distributionof Marenzelleriacf.viridis
(Polychaeta: Spionidae) alongthePolishcoastof the BalticSea, Oceanol.Hydrobiol.
Stud.,34 (Suppl.1),227-237.
Wawrzyniak-WydrowskaB., Gruszka P., 2005,Population dynamics ofalien gammarid
speciesintheRiverOdraestuary,Hydrobiologia, 539 (1),13-25,
http://dx.doi.org/10.1007/s10750-004-3081-6
Wenne R., WiktorK., 1982, Faunadennaprzybrzeżnychwód ZatokiGdańskiej, Stud.Mater.
Oceanol. PAN, 39, Gdańsk, 137-171.
Winkler H. M., Debus L., 1996, Is the polychaete Marenzelleriaviridis an important food itemfor
fish?,Proc. 13th Symp.BalticMar.Biol., 147-151.
Wolff W. J., 1999, Exoticinvadersof the meso-oligohalinezone of estuariesin the
Netherlands:why are thereso many?, Helgoländ.Meeresunt.,52 (3-4),393-400,
http://dx.doi.org/10.1007/BF02908913
WoźniczkaA.,Gromisz S.,WolnomiejskiN.,2011,Hypaniainvalida(Grube,
1960),a polychaetespeciesnewforthesouthernBalticestuarinearea:the Szczecin
LagoonandtheRiverOdramouth,Aquat. Invasions,6 (1),39-46,
http://dx.doi.org/10.3391/ai.2011.6.1.05
Zaiko A., Olenin S., Daunys D., Nalepa T., 2007, Vulnerability of benthic habitats to the aquatic
invasivespecies,Biol.Invasions, 9 (6),703-714,
http://dx.doi.org/10.1007/s10530-006-9070-0
ZettlerM. L.,BochertR., BickA., 1994, RöhrenbauundVertikalverteilungvon
Marenzelleria viridis (Polychaeta:Spionidae)in einem Küstengewässer der südlichenOstsee,
Rostock. Meeresbiol. Beiträg., 2, 215-225.
Epibionts and parasites on crustaceans (Copepoda, Cladocera, Cirripedia larvae) inhabiting the Gulf of Gdańsk (Baltic Sea) in very large numbers
Oceanologia 2014, 56(3), 629-638
http://dx.doi.org/10.5697/oc.56-3.629
Luiza Bielecka1,*,
Rafał Boehnke
1Department of Marine Plankton Research, Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: ocelb@univ.gda.pl
*corresponding author
2Marine Ecology Department, Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
keywords:
Baltic Sea, Zooplankton crustaceans, Epibionts and parasites
Received 4 April 2013, revised 11 December 2013, accepted 10 January 2014.
This work was supported in part by grant No. BW/1320-5-0183-3 from the University of Gdańsk.
Abstract
The occurrence of epizoic filter-feeding Protozoa (Vorticella and Zoothamnium) and parasitic Protozoa (Ellobiopsis) on Calanoida was noticed in the Gulf of Gdańsk in 1998, 1999 and 2006. The relatively high (4-16% of all calanoids) level of infestation varied depending on the type of infestation (0.1-13% of the population of particular taxa). The dominant copepods – Acartia spp., Temora longicornis and Centropages hamatus - were attacked the most frequently (from 10.5% to 54% of all infested calanoids).
Epibiosis and parasitism were observed on all copepod developmental stages (adults, juveniles and nauplii). Epibionts and parasites were located on different parts of the body, but mainly on the prosome. Infestation by epibionts and parasites was not restricted to calanoid copepods: it was also detected in non-negligible numbers on other crustaceans, namely, Harpacticoida, Cladocera (Bosmina sp.) and Cirripedia larvae (nauplii) in the Gulf of Gdańsk.
References
AlbainaA.,Irigo jen X.,2006, Fecunditylimitationof
Calanushelgolandicus,by the
parasite Ellobiopsissp.,J. Plankton Res., 28 (4),413-418,
http://dx.doi.org/10.1093/plankt/fbi129
Bielecka L., Ga j M., MudrakS., ŻmijewskaM. I., 2000, Theseasonal and short-term variability
of zooplankton taxonomic compositionin shallow coastal area of the Gulf of Gdańsk, Oceanol.
Stud., XXIX (1), 57-76.
ChiavelliA. D.,Mills E. L.,ThrelkeldS. T.,1993, Hostpreferences,seasonality, and
communityinteractionsof zooplankton epibionts, Limnol. Oceanogr.,38, 574-583,
http://dx.doi.org/10.4319/lo.1993.38.3.0574
Decaestecker E., Declerck S., De Meester L., EbertD., 2005, Ecological implications ofparasites
innaturalDaphnia populations,Oecologia,144 (3), 382-390,
http://dx.doi.org/10.1007/s00442-005-0083-7
Hirche H. J.,1974, DieCopepoden
Eurytemora affinis Poppe und
Acartia tonsa
Dana und ihre Besiedlung durch Myoschistoncentropagidarum Precht (Peritricha)in der Schlei,
Kiel. Meeresforsch., 30, 43-64.
Ho J.,PerkinsP. S., 1985, Symbiontsof marinecopepod:an overview, Bull. Mar.
Sci., 37, 586-598.
Hu X., Song W., 2001, Descriptionof
Zoothamnium chlamydis sp. n. (Protozoa: Ciliophora:
Peritrichida),an Ectocommensal
PeritrichousCiliate from CulturedScallop in North
China,ActaProtozool.,40, 215-220.
JózefczukA.,GuzeraE.,BieleckaL.,2003,Short-termvariabilityof mesozooplankton at
two stations(Gdynia,Sopot)inthe shallow water zone of the Gulf of Gdańsk, Oceanologia, 45
(2), 317-336.
Kimmerer W. J., McKinnon A., 1990, High mortality in a copepod population caused byparasitic
dinoflagellate,Mar.Biol.,107,449-452,
http://dx.doi.org/10.1007/BF01313428
KonovalovaG. V., 2008, ParasiticDinoflagellates and Ellobiopsids(Ellobiopsidae) of the Coastal
Waters of the Sea of Japan, Russ. J. Marine Biol., 34 (1), 28-37,
http://dx.doi.org/10.1134/S1063074008010045
MancaM., Beltrami M., Sonvico D., 1996, Onthe appearance of epibionts on the crustacean
zooplankton of a large subalpine lake undergoing oligotrophication (L.Maggiore,Italy), Mem.
Ist. Ital. Idrobiol.,54, 161-171.
MancaM., CarnovaleA., AlemaniP.,2004, Exotopicprotrusionsand ellobiopsid infection in
zooplanktoniccopepodsofalarge, deepsubalpinelake, Lago Maggiore, innorthern
Italy,J. PlanktonRes., 26 (11), 1257-1263,
http://dx.doi.org/10.1093/plankt/fbh117
MudrakS., Żmijewska M. I., 2007, Spatio-temporal variability of mesozooplankton from the Gulf of
Gdańsk (Baltic Sea) in 1999-2000, Oceanol. Hydrobiol. Stud., 36 (2), 3-19,
http://dx.doi.org/10.2478/v10009-007-0007-4
Schiewer U., 2008, Ecology of Baltic coastal waters, Springer-Verlag, Berlin, 429 pp.,
http://dx.doi.org/10.1007/978-3-540-73524-3
Shields J. D., 1994, The parasitic Dino?agellates of marine Crustaceans, Ann. Rev.
Fish Dis., 4, 241-271,
http://dx.doi.org/10.1016/0959-8030(94)90031-0
SimmM.,OjaveerE.,2000, Dynamicsofcopepodsand ?sh larvae inPrnuBay (NEpart of
the GulfofRiga)inthe spring-summerperiod, Proc.Estonian Acad. Sci. Biol. Ecol., 49, 317-326.
Sobol Z., SzumilasT.,1994, Causesof poor sanitaryconditionof marinecoastal waters of
the Gulf ofGdańsk, [in:]Pollutionand restorationofthe Gulfof Gdańsk,Mater.Seminar,
Univ. Gdansk,Gdynia,104-111, (in Polish).
TimofeevC. F.,1997,An occurrenceoftheparasiticDinoflagellata
Ellobiopsis chattoni
(Protozoa: Mastigophora) on the Copepod
Calanus finmarchicus (Crustacea:Copepoda)anda
possibilitytousethe parasiticasabiological tag of local populations, Parazitologiya, 31
(4), 334-339, (in Russian).
Timofeev C. F.,2002, The effect of the parasitic dinoflagellate
Ellobiopsis
chattoni (Protozoa:Mastigophora) on the winter mortality of the calanoid copepod
Calanus
finmarchicus (Crustacea: Copepoda) in the Norwegian Sea, Parazitologiya, 36 (2), 158-162, (in Russian).
Visse M., 2007, Detrimentaleffect of peritrichciliates(Epistylissp.)as epibionts on the
survival of the copepod
Acartiabifilosa, Proc. Estonian Acad. Sci. Biol. Ecol., 56 (3), 173-178.
Walkusz W., Rolbiecki L., 2007, Epibionts(Paracineta)and parasites (Ellobiopsis)
oncopepodsfromSpitsbergen(Kongsfjordenarea),Oceanologia,49 (3),369-380.
WiktorK.,1993, Theextent ofinfectionofCalanoidainthe GulfofGdańskby parasitic
Protozoa, Stud. Mater. Oceanol.,64 (3), 243-253.
Wiktor K., Krajewska-Sołtys A., 1994,Occurrenceof epizoic andparasitic
protozoans on Calanoidain the Southern Baltic, Bull. Sea Fish. Inst.,132 (2), 13-25.
Żmijewska M. I., NiemkiewiczE., BieleckaL., 2000,Abundance andspecies composition
of plankton in the Gulfof Gdańsknear planned underwater outfall ofthe Gdańsk-Wschód
(Gdańsk-East)sewage treatment plant, Oceanologia,
42 (3), 335-357.
Communications
Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum
Oceanologia 2014, 56(3), 639-650
http://dx.doi.org/10.5697/oc.56-3.639
Zhuoping Cai1,2,3,
Honghui Zhu2,
Shunshan Duan3,*,
1Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture,
Beijing 100081, China,
2State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture
Collection and Application, Guangdong Institute of Microbiology,
Guangzhou 510070, China;
e-mail: ocelb@univ.gda.pl
*corresponding author
keywords:
Allelopathic interaction, Prorocentrum donghaiense, Phaeodactylum tricornutum, Red tide
Received 25 August 2013, revised 26 March 2014, accepted 2 April 2014.
This study was supported by the Natural Science Foundation of China-GuangdongProvince Joint Key Project (U1133003), Science and Technology Planning Project ofGuangdong Province (2012B020307009), Open Fund from Key Laboratory of AquaticEutrophication and Control of Harmful Algal Blooms of Guangdong Higher EducationInstitutes, and Open Fund from Key Laboratory of Microbial Resources Collection andPreservation, Ministry of Agriculture.
Abstract
The interactions between the red-tide causing dinoflagellate Prorocentrum donghaiense and the marine diatom Phaeodactylum tricornutum were investigated using a co-culture experiment and an enriched culture filtrate experiment. The results showed that when the two microalgae were cultured together with different initialcell densities, the growth of one species was basically suppressed by the other one. In addition, the enriched culture filtrates of one species had generally inhibitoryeffects on the other one. Our result inferred that P. donghaiense and P. tricornutum would interfere with each other mainly by releasing allelochemicals into the culture medium, and that the degree of allelopathic effects was dependent on the initial cell densities and growth phases. The allelopathic interactions between microalgal species may contribute to the formation and succession of red tides.
References
Addisie Y., Medellin A. C., 2012, Allelopathy in aquatic macrophytes: effects on
growth and physiology of phytoplankton, Afr. J. Plant Sci., 6 (10), 270-276.
An M., Johnson I.R., Lovett J.V., 1996, Mathematical modeling of allelopathy.
I. Phytotoxicity caused by plant residues during decomposition, Allelopathy J.,
3 (1), 33-42.
Bertholdsson N., 2012, Allelopathy - a tool to improve the weed competitive ability
of wheat with herbicide-resistant black-grass (
Alopecurus myosuroides Huds.),
Agronomy, 2 (4), 284-294,
http://dx.doi.org/10.3390/agronomy2040284
Cai Z.P., Duan S. S., Wei W., 2009, Darkness and UV radiation provoked
compensatory growth in marine phytoplankton
Phaeodactylum tricornutum
(Bacillariophyceae), Aquac. Res., 40 (13), 1559-1562,
http://dx.doi.org/10.1111/j.1365-2109.2009.02218.x
Cai Z.P., Duan S. S., Zhu H.H., 2013, Compensatory growth of the bloomforming
dinoflagellate Prorocentrum donghaiense induced by nitrogen stress, Oceanologia,
55 (1), 269-276,
http://dx.doi.org/10.5697/oc.55-1.269
Cummings J.A., Parker I.M., Gilbert G. S., 2012, Allelopathy: a tool for weed
management in forest restoration, Plant Ecol., 213 (12), 1975-1989,
http://dx.doi.org/10.1007/s11258-012-0154-x
Feng Y. J.,Wang J.W., Jin Q., 2010, Asian corn borer (
Ostrinia furnacalis) damage
induced systemic response in chemical defence in Bt corn (
Zea mays L.),
Allelopathy J., 26 (2), 101-112
Gantar M., Berry J.P., Thomas S., Wang M. L., Perez R., Rein K. S., 2008,
Allelopathic activity among Cyanobacteria and microalgae isolated from
Florida freshwater habitats, FEMS Microbiol. Ecol., 64 (1), 55-64,
http://dx.doi.org/10.1111/j.1574-6941.2008.00439.x
Guillard R. R. L., 1973, Division rates, [in:] Handbook of phycological methods:
culture methods and growth measurements, J.R. Tein (ed.), Cambridge Univ.
Press, Cambridge.
Hu Z.X., Mulholland M.R., Duan S. S., Xu N., 2012, Effects of nitrogen supply and
its composition on the growth of Prorocentrum donghaiense, Harmful Algae,
13, 72-82,
http://dx.doi.org/10.1016/j.hal.2011.10.004
Jonsson P.R., Pavia H., Toth G., 2009, Formation of harmful algal blooms cannot
be explained by allelopathic interactions, Proc. Nat. Acad. Sci. USA, 106 (27),
11177-11182,
http://dx.doi.org/10.1073/pnas.0900964106
Keating K. I., 1977, Allelopathic influence on blue-green bloom sequence in
a eutrophic lake, Science, 196 (4292), 885-886,
http://dx.doi.org/10.1126/science.196.4292.885
Keating K. I., 1978, Blue-green algal inhibition of diatom growth: transition from
mesotrophic to eutrophic community structure, Science, 199 (4332), 971-973,
http://dx.doi.org/10.1126/science.199.4332.971
Khan M. B., Khan M., Hussain M., Farooq M., Jabran K., Lee D. J., 2012,
Bio-economic assessment of different wheat-canola intercropping systems, Int.
J. Agr. Biol., 14 (5), 769-774
Kremp A., Godhe A., Egardt J., Dupont S., Suikkanen S., Casabianca S., Penna
A., 2012, Intraspecific variability in the response of bloom-forming marine
microalgae to changed climate conditions, Ecol. Evol., 2 (6), 1195-1207,
http://dx.doi.org/10.1002/ece3.245
Laanaia N., Vaquer A., Fiandrino A., Genovesi B., Pastoureaud A., Cecchi P.,
Collos Y., 2013, Wind and temperature controls on Alexandrium blooms (2000-
2007) in Thau lagoon (Western Mediterranean), Harmful Algae, 28, 31-36,
http://dx.doi.org/10.1016/j.hal.2013.05.016
Legrand C., Rengefors K., Fistarol G. O., Graneli E., 2003, Allelopathy in
phytoplankton - biochemical, ecological and evolutionary aspects, Phycologia,
42 (4), 406-419,
http://dx.doi.org/10.2216/i0031-8884-42-4-406.1
Lu D.D., Goebel J., Qi Y. Z., Zou J. Z., Han X.T., Gao Y.H., Li R.X., 2005,
Morphological and genetic study of Prorocentrum donghaiense Lu from the
East China Sea, and comparison with some related Prorocentrum species,
Harmful Algae, 4 (3), 493-505,
http://dx.doi.org/10.1016/j.hal.2004.08.015
Meiners S. J., Kong C.H., Ladwig L.M., Pisula N. L., Lang K.A., 2012, Developing
an ecological context for allelopathy, Plant Ecol., 213 (8), 1221-1227,
http://dx.doi.org/10.1007/s11258-012-0078-5
Nagasaki K., Ando M., Itakura S., Imai I., Ishida Y., 1994, Viral mortality in the
final stage of
Heterosigma akashiwo (Raphidophyceae) red tide, J. Plankton
Res., 16 (11), 1595-1599,
http://dx.doi.org/10.1093/plankt/16.11.1595
Nagasoe S., Toda S., Shimasaki Y., Oshima Y., Uchida T., Honjo T., 2006, Growth
inhibition of Gyrodinium instriatum (Dinophyceae) by
Skeletonema costatum
(Bacillariophyceae), Afr. J. Mar. Sci., 28 (2), 325-329,
http://dx.doi.org/10.2989/18142320609504171
Persson A., Smith B.C., Wikfors G.H., Alix J.H., 2013, Differences in swimming
pattern between life cycle stages of the toxic dinoflagellate
Alexandrium
fundyense, Harmful Algae, 21-22, 36-43,
http://dx.doi.org/10.1016/j.hal.2012.11.005
Rengefors K., Legrand C., 2001, Toxicity in Peridinium aciculiferum- an adaptive strategy to
outcompeteother winterphytoplankton,Limnol. Oceanogr.,46 (8), 1990-1997,
http://dx.doi.org/10.4319/lo.2001.46.8.1990
Rice E. L., 1984, Allelopathy,2nd edn., Acad. Press,New York, 422 pp.
Smayda T. J., 1997, Harmful algal blooms: their ecophysiology and general relevance to
phytoplankton bloomsinthesea,Limnol.Oceanogr., 42 (5),1137-1153,
http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1137
TarutaniK.,Nagasaki K.,YamaguchiM., 2000, Viral impactson total
abundance and clonal compositionof the harmful bloom-formingphytoplankton
Heterosigma
akashiwo, Appl. Environ.Microb., 66 (11), 4916-4920.
Yamasaki Y.,NagasoeS.,MatsubaraT., ShikataT., Shimasaki Y.,Oshima Y., Honjo T.,
2007, Allelopathic interactions between the bacillariophyte Skeletonemacostatumand the
raphidophyte
Heterosigmaakashiwo, Mar. Ecol. Prog. Ser., 339, 83-92,
http://dx.doi.org/10.3354/meps339083
YamasakiY., Nagasoe S., TameishiM., ShikataT.,Zou Y., Jiang Z., Matsubara T., Shimasaki Y.,
YamaguchiK., Oshima Y., Oda T., Honjo T., 2010, The role of interactions between
Prorocentrum
minimum and
Heterosigmaakashiwo in bloomformation,Hydrobiologia,641 (1),33-44,
http://dx.doi.org/10.1007/s10750-009-0052-y
Żak A., Musiewicz K., Kosakowska A., 2012, Allelopathic activity of the Baltic cyanobacteria
againstmicroalgae,Estuar. Coast.Shelf Sci., 112, 4-10,
http://dx.doi.org/10.1016/j.ecss.2011.10.007
Absence of evidence for viral infection in colony-embedded cyanobacterial isolates from the Curonian Lagoon
Oceanologia 2014, 56(3), 651-660
http://dx.doi.org/10.5697/oc.56-3.651
Sigitas Sulcius1,4,*,
Juozas Staniulis2,
Ricardas Paskauskas1,2,
Irina Olenina1,3,
Airina Salyte4,
Aurelija Ivanauskaite4,
Evelina Griniene1
1Klaipeda University, Marine Science and Technology Centre,
H. Manto 84, LT-92294 Klaipeda, Lithuania,
2Nature Research Centre, Institute of Botany,
Žaliuju ežeru 49, LT-2021 Vilnius, Lithuania
3Environmental Protection Agency, Marine Research Department,
Taikos 26, LT-91149 Klaipeda, Lithuania
4Klaipeda University, Faculty of Natural Sciences and Mathematics, Biology Department,
H. Manto 84, LT-92294 Klaipeda, Lithuania;
e-mail: sigas@corpi.ku.lt
*corresponding author
keywords:
Aphanizomenon flos-aquae, bloom dynamics, colony formation, defence strategy, lysis, lysogeny, Microcystis aeruginosa, virus infection, virus-host interactions, virus production
Received 21 October2013, revised 26 March 2014, accepted 12 May 2014.
This research was funded by a grant (No. MIP-036/2012) from the Research Council of Lithuania.
Abstract
The aim of the present study was to assess the frequency of viral infections in colony-embedded cells of the cyanobacteria Aphanizomenon flos-aquae and Microcystis aeruginosa collected from the brackish Curonian Lagoon. Natural and mitomycin C-treated A. flos-aquae and M. aeruginosa samples were examined for the presence of viruses and lysis by a combination of light-, epifluorescence and transmission electron microscopy techniques. Here we report a lack of evidence for virus infection, progeny formation and cell lysis in colony-embedded cells of A. flos-aquae and M. aeruginosa. These results indicated that viruses contribute little to the mortality of these cyanobacteria when the latter occur in colonies. Consequently, the results supported the hypothesis that colony formation can, at least temporarily, provide an efficient strategy for protection against virus-induced mortality. Finally, assuming that grazing has a negligible effect on colony-embedded cells in the Curonian Lagoon, we propose that most of the cyanobacterial biomass produced is lost from the pelagic food web by sedimentation.
References
Baudoux A. C.,BrussaardC. P. D.,2005,Characterization ofdifferentviruses
infecting the marine harmful algal bloom species Phaeocystisglobosa, Virology,
341 (1), 80-90,
http://dx.doi.org/10.1016/j.virol.2005.07.002
Baudoux A. C., Noordeloos A. A. M., Veldhuis M. J. W., BrussaardC. P. D.,
2006,VirallyinducedmortalityofPhaeocystis globosaduringtwospring bloomsin
temperatecoastalwaters, Aquat. Microb.Ecol.,44 (3),207-217,
http://dx.doi.org/10.3354/ame044207
Brussaard C. P. D.,Bratbak G.,Baudoux A. C.,Ruardij P.,2007,Phaeocystis and its
interactionwith viruses,Biogeochemistry, 83 (1-3),201-215,
http://dx.doi.org/10.1007/s10533-007-9096-0
Brussaard C. P. D.,KuipersB.,VeldhuisM. J. W.,2005,Amesocosmstudyof Phaeocystis
globosa population dynamics I. Regulatory role of viruses in bloom control, HarmfulAlgae, 4 (5), 859-874,
http://dx.doi.org/10.1016/j.hal.2004.12.015
CallieriC., 2010, Singlecells and microcoloniesof freshwater picocyanobacteria?: a common ecology, J. Limnol., 69 (2), 257-277,
http://dx.doi.org/10.4081/jlimnol.2010.257
Cao H., Shimura Y., Masanobu K., Yin Y., 2014, Draft genome sequence of the toxic bloom-forming
cyanobacterium Aphanizomenonflos-aquae NIES-81, Genome Announcements, 2 (1), e00044-14,
http://dx.doi.org/10.1128/genomeA.00044-14
Cochran P.K., Paul J.H., 1998, Seasonal abundance of lysogenic bacteria in
a subtropical estuary, Appl. Environ. Microb., 64 (6), 2308-2312.
Coulombe A.M., Robinson G.G.C., 1981, Collapsing Aphanizomenon flosaquae
blooms: possible contributions of photo-oxidation, O
2 toxicity, and
cyanophages, Can. J. Bot., 59 (7), 1277-1284.
Deng L., Hayes P. K., 2008, Evidence for cyanophages active against bloomforming
freshwater cyanobacteria, Freshwater Biol., 53 (6), 1240-1252,
http://dx.doi.org/10.1111/j.1365-2427.2007.01947.x
Dillon A., Parry J.D., 2008, Characterization of temperate cyanophages active
against freshwater phycocyanin-rich Synechococcus species, Freshwater Biol.,
53 (6), 1253-1261.
Gasiūnaitė Z.R., Cardoso A.C., Heiskanen A. S., Henriksen P., Kauppila P.,
Olenina I., Pilkaitytė R., Purina I., Razinkovas A., Sagert S., Schubert H.,
Wasmund N., 2005, Seasonality of coastal phytoplankton in the Baltic Sea:
Influence of salinity and eutrophication, Estuar. Coast. Shelf Sci., 65 (1-2), 239-252,
http://dx.doi.org/10.1016/j.ecss.2005.05.018
Gasiūnaitė Z.R., Olenina I., 1998, Zooplankton-phytoplankton interactions:
a possible explanation of the seasonal succession in the Kuršiu Marios Lagoon,
Hydrobiologia, 363 (1-3), 333-339.
Granhall U., 1972, Aphanizomenon flos-aquae: Infection by cyanophages, Physiol.
Plantarum, 26 (3), 332-337.
Glauert A.M., Lewis P.R., 1998, Biological specimen preparation for transmission
electron microscopy, [in:] Practical methods in electron microscopy,
A.M. Glauert (ed.), Princeton Univ., Princeton, 175-223.
Hamm C. E., Simson D.A., Merkel R., Smetacek V., 1999, Colonies of Phaeocystis
globosa are protected by a thin but tough skin, Mar. Ecol.-Prog. Ser., 187, 101-111,
http://dx.doi.org/10.3354/meps187101
Hewson I., Govil S. R., Capone D.G., Carpenter E. J., Fuhrman J.A.,
2004, Evidence of Trichodesmium viral lysis and potential significance for
biogeochemical cycling in the oligotrophic ocean, Aquat. Microb. Ecol., 36 (1), 1-8,
http://dx.doi.org/10.3354/ame036001
Hughes K.A., Sutherland I.W., Jones M.V., 1998, Biofilm susceptibility to
bacteriophage attack: the role of phage-borne polysaccharide depolymerase,
Microbiology, 144 (11), 3039-3047.
Jacobsen A., Bratbak G., Heldal M., 1996, Isolation and characterization of a virus
infecting Phaeocystis pouchetii (Prymnesiophyceae), J. Phycol., 32 (6), 923-927.
Jacobsen A., Larsen A., Martínez-Martínez J., Verity P.G., Frischer Mė.,
2007, Susceptibility of colonies and colonial cells of Phaeocystis pouchetii
(Haptophyta) to viral infection, Aquat. Microb. Ecol., 48 (2), 105-112,
http://dx.doi.org/10.3354/ame048105
Jassim S.A.A., Limoges R.G., 2013, Impact of external forces on cyanophage-host
interactions in aquatic ecosystems, World J. Microb. Biot., 29 (10), 1751-1762,
http://dx.doi.org/10.1007/s11274-013-1358-5
Jüurgens K., Güude H., 1994, The potential importance of grazing-resistant bacteria
in planktonic systems, Mar. Ecol.-Prog. Ser., 112 (1), 169-188.
Kimura S., Yoshida T., Hosoda N., Honda T., Kuno S., Kamiji R., Hashimoto
R., Sako Y., 2012, Diurnal infection patterns and impact of Microcystis
cyanophages in a Japanese pond, Appl. Environ. Microb., 78 (16), 5805-5811,
http://dx.doi.org/10.1128/AEM.00571-12
Luft J.H., 1961, Improvements in epoxy resin embedding methods, J. Bioph.
Biochem. Cytol., 9 (2), 409-414.
Lüurling M., Van Donk E., 2000, Grazer-induced colony formation in Scenedesmus:
are there costs to being colonial?, Oikos, 88 (1), 111-118.
Łotocka M., 2001, Toxic effect of cyanobacterial blooms on the grazing activity of
Daphnia magna Straus, Oceanologia, 43 (4), 441-453.
Martínez J. L., Rojo F., 2011, Metabolic regulation of antibiotic resistance, FEMS
Microbiol. Rev., 35 (5), 768-789,
http://dx.doi.org/10.1111/j.1574-6976.2011.00282.x
McDaniel L., Houchin L.A., Williamson S. J., Paul J.H., 2002, Lysogeny in marine
Synechococcus, Nature, 415 (6871), 496,
http://dx.doi.org/10.1038/415496a
Patel A., Noble R.T., Steele J.A., Schwalbach M. S., Hewson I., Fuhrman J.A.,
2007, Virus and prokaryote enumeration from planktonic aquatic environments
by epifluorescence microscopy with SYBR Green I, Nat. Protocols, 2 (2), 269-276,
http://dx.doi.org/10.1038/nprot.2007.6
Paul J.H., Weinbauer M.G., 2010, Detection of lysogeny in marine environments,
30-33, [in:] Manual of aquatic viral ecology, S.W. Wilhelm, M. G. Weinbauer,
& C.A. Suttle (eds.), ASLO.
Pilkaitytė R., Razinkovas A., 2006, Factors controlling phytoplankton blooms in
a temperate estuary: Nutrient limitation and physical forcing, Hydrobiologia,
555 (1), 41-48,
http://dx.doi.org/10.1007/s10750-005-1104-6
Pollard P.C., Young L.M., 2010, Lake viruses lyse cyanobacteria, Cylindrospermopsis
raciborskii, enhances filamentous-host dispersal in Australia, Acta Oecol.,
36 (1), 114-119,
http://dx.doi.org/10.1016/j.actao.2009.10.007
Ruardij P., Veldhuis M. J., Brussaard C.P., 2005, Modeling the bloom dynamics
of the polymorphic phytoplankter Phaeocystis globosa: impact of grazers and
viruses, Harmful Algae, 4 (5), 941-963.
Sato T., 1968, A modified method for lead staining of thin sections, J. Electron
Microsc., 17 (2), 158-159.
Sellner K.G., Olson M.M., Kononen K., 1994, Copepod grazing in a summer
cyanobacteria bloom in the Gulf of Finland, Hydrobiologia, 292/293 (1), 249-254,
http://dx.doi.org/10.1007/BF00229948
Sulcius S., Staniulis J., Paüukauskas R., 2011, Morphology and distribution of
phage-like particles in a eutrophic boreal lagoon, Oceanologia, 53 (2), 587-603,
http://dx.doi.org/10.5697/oc.53-2.587
Šimek K., Weinbauer M.G., Hornk K., Jezbera J., Nedoma J., Dolan J. R.,
2007, Grazer and virus-induced mortality of bacterioplankton accelerates
development of Flectobacillus populations in a freshwater community, Environ.
Microbiol., 9 (3), 789-800,
http://dx.doi.org/10.1111/j.1462-2920.2006.01201.x
TangK. W.,2001, GrazingandcolonysizedevelopmentinPhaeocystis globosa
(Prymnesiophyceae): the role of a chemicalsignal, J. Plankton Res.,25 (7),
831-842.
WaterburyJ. B.,ValoisF. W.,1993,Resistance toco-occurringphages enables marine
Synechococcuscommunitiesto coexistwith cyanophages abundant in seawater, Appl. Environ.
Microb., 59 (10), 3393-3399.
Weinbauer M. G.,SuttleC. A., 1999, Lysogenyand prophage inductionincoastal and offshore
bacterial communities, Aquat.Microb. Ecol., 18 (3), 217-225.
Yamamoto Y., Shiah F. K., Chen Y. L., 2011, Importance of largecolony formation
inbloom-formingcyanobacteriatodominateineutrophicponds, Int. J. Limnol., 47 (2), 167-173,
http://dx.doi.org/10.1051/limn/2011013
YangZ.,KongF., 2012,Formation oflargecolonies:adefensemechanism of
Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonassp., J. Limnol.,
71 (1), 61-66.
Yoshida T., Nagasaki K., Takashima Y., Shirai Y., Tomaru Y., Takao Y., Sakamoto S., Hiroishi S.,
Ogata H., 2008a, Ma-LMM01 infecting toxic Microcystis aeruginosailluminatesdiversecyanophage
genomestrategies,J. Bacteriol., 190 (5), 1762-1772,
http://dx.doi.org/10.1128/JB.01534-07
Yoshida T., TakashimaY., Tomaru Y., Takao Y., Hiroishi S., Shirai Y.,
Nagasaki K., 2006, Isolation and characterization of a cyanophage infecting the toxic
cyanobacterium Microcystis aeruginosa, Appl.Environ.Microb.,72 (2), 1239-1247.
Yoshida M., Yoshida T., Kashima A., TakashimaY., HosodaN., Nagasaki K.,
Hiroishi S., 2008b, Ecological dynamics of the toxic bloom-forming cyanobacteriumMicrocystis
aeruginosaanditscyanophagesinfreshwater, Appl. Environ.Microb., 74 (10), 3269-73,
http://dx.doi.org/10.1128/AEM.02240-07
Zilius M.,BartoliM.,DaunysD.,PilkaityteR.,RazinkovasA.,2012, Patterns of benthic
oxygen uptake in a hypertrophic lagoon:spatial variability and controllingfactors,
Hydrobiologia, 699 (1), 85-98,
http://dx.doi.org/10.1007/s10750-012-1155-4
Large red cyanobacterial mats (Spirulina subsalsa Oersted ex Gomont) in the shallow sublittoral of the southern Baltic
Oceanologia 2014, 56(3), 661-666
http://dx.doi.org/10.5697/oc.56-3.661
Maria Włodarska-Kowalczuk1,*,
Piotr Balazy1,
Justyna Kobos2,
Józef Wiktor1,
Marek Zajączkowski1,
Wojciech Moskal1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: maria@iopan.gda.pl
*corresponding author
2Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland
keywords:
Baltic Sea, cyanobacteria, algal mats
Received 23 December 2013, revised 29 January 2014, accepted 17 February 2014.
Abstract
We report the first observation of large red cyanobacterial mats in the southernBaltic Sea. The mats (up to 2.5 m in diameter) were observed by SCUBA divers at 7.7 m depth on loamy sediments in the Gulf of Gdańsk in mid-November 2013. The main structure of the mat was formed by cyanobacteria Spirulina subsalsa Oersted ex Gomont; a number of other cyanobacteria, diatoms and nematode species were also present. After a few days in the laboratory, the red trichomes of S. subsalsa started to turn blue-green in colour,suggesting the strong chromatic acclimation abilities of this species.
References
Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582,
http://dx.doi.org/10.5697/oc.52-4.533
Dziubińska A., Janas U., 2007, Submerged objects - a nice place to live and
develop. Succession of fouling communities in the Gulf of Gdańsk, Southern
Baltic, Oceanol. Hydrobiol. St., 36 (4), 65-78,
http://dx.doi.org/0.2478/v10009-007-0026-1
DziubińskaA., SzaniawskaA., 2010, Short-term studyon early successionstages
offouling communitiesin thecoastalzone ofthePuck Bay (southern BalticSea),
Oceanol. Hydrobiol.St., 39 (4), 3-16,
http://dx.doi.org/10.2478/v10009-010-0055-z
Gutu A., Kehoe D. M., 2012, Emerging perspectiveson the mechanisms, regulation, and distribution
of light color acclimationin cyanobacteria,Mol. Plant, 5 (1), 1-13,
http://dx.doi.org/10.1093/mp/ssr054
Johansson G.,ErikssonB. K., PedersenM., Snoeijs P.,1998,
Longtermchanges of macroalgal vegetationin the Skagerrak area,
Hydrobiologia,385 (1-3), 121-138,
http://dx.doi.org/10.1023/A:1003405826222
Komárek J.,Anagnostidis K.,2005,Band19/2.Cyanoprocaryota, 2.Teil: Oscillatoriales;
Süsswasserflora von Mitteleuropa,GustavFisher Verlag, Jena.
Pliński M., 1975, The algae in the surface water of the Bay of Puck (Baltic)in the vegetative
period of 1972, Bot. Mar.,18, 183-186.
PlińskiM.,KomárekJ.,2007, Flora of theGulfof Gdańskandadjacentwaters (South
Baltic).Cyanobacteria(Cyanoprokaryota), Univ. Gdańsk,164 pp., (in Polish).
Rathsack-Künzenbach R., 1961, Zur Cyanophyceenflora der Westkste von Rügen I., Int. Rev. Ges.
Hydrobiol.,46, 653-663.
Ringer Z., 1984, Phytoplankton of the southernBalticin 1982 and 1983, Bull. Sea
Fish. Inst., Gdynia,33-37.
WallinA.,Qvarfordt S.,NorlingP.,KautskyH.,2011, Benthiccommunities in relationto
wave exposureand spatialpositionson sublittoralboulders inthe BalticSea, Aquat.Biol.,12 (2), 119-128,
http://dx.doi.org/10.3354/ab00329
WitkowskiA.,1993, Microphytobenthos, [in:]PuckBay,K. Korzeniewski(ed.), Inst.
Oceanogr.Univ. Gdańsk,395-415, (in Polish).