Oceanologia No. 56 (3) / 14


Contents


Papers

Communications


Papers



Recent sea surface temperature trends and future scenarios for the Mediterranean Sea
Oceanologia 2014, 56(3), 411-443
http://dx.doi.org/10.5697/oc.56-3.411

Mohamed Shaltout1,2,*, Anders Omstedt2
1Faculty of Science, Department of Oceanography, University of Alexandria,
Alexandria, Egypt;
e-mail: mohamed.shaltout@gvc.gu.se
*corresponding author
2Department of Earth Sciences, University of Gothenburg,
P.O. Box 460, Göteborg 40530, Sweden

keywords: Mediterranean Sea, sea surface temperature, climate change, heat exchange, total cloud cover

Received 13 May 2013, revised 25 November 2013, accepted 23 January 2014.

Abstract

We analyse recent Mediterranean Sea surface temperatures (SSTs) and theirresponse to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR) daily SST data, 1982-2012. These data indicate significantannual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea) and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin). Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6°C century-1 in the Representative Concentration Pathways 85 (RCP85) scenario.

  References ref

Anonymous, 1988,Navalenvironmentalprediction researchfacility,Tech.Rep. (U.S), Univ. California,67 pp.

BakunA.,AgostiniA.,2001,Seasonalpatternofwindinducedupwelling/downwellingin the Mediterranean Sea, Sci. Mar.,65 (3), 243-257.

BelkinM.,2009,Rapidwarmingoflarge marineecosystems, Prog.Oceanogr., 81 (1-4), 207-213, http://dx.doi.org/10.1016/j.pocean.2009.04.011

BerrisfordP.,DeeD.,PoliP.,BruggeR.,FieldingK.,Fuentes M.,Kallberg P., KobayashiS., UppalaS., SimmonsA.,2011, TheERA-Interim archive, version 2.0., ERA Rep. Ser. No. 1 (Tech. Rep.), European Centre for Medium- Range Weather Forecasting (ECMWF), Reading, 23 pp.

Borzelli G., Manzella G., Marullo S., Santoleri R., 1999, Observationsof coastal filamentsin the AdriaticSea,J. MarineSyst.,20 (1-4),187-203, http://dx.doi.org/10.1016/S0924-7963(98)00082-7

BrierleyM.,FedorovV.,2010, Relativeimportanceof meridionalandzonalsea surface temperaturegradientsfortheonsetoftheiceagesandPliocene- Pleistoceneclimate evolution,Paleoceanography, 25 (2),PA2214, http://dx.doi.org/10.1029/2009PA001809

Clarke L., EdmondsJ., Jacoby H., Pitcher H., Reilly J., Richels R., 2007, Scenarios of greenhouse gas emissionsand atmosphericconcentrations. Sub-report2.1a of Synthesisand Assessment Product2.1.,ClimateChangeScience Program and the Subcommittee on Global ChangeResearch, Washington, DC.

Delgado J., Garcia-Lafuente J., Vargas M. J., 2001, A simple model for submaximal exchange through the Straitof Gibraltar, Sci. Mar.,65 (4), 313-322.

D’OrtenzioF.,MarulloS., SantoleriR.,2000, Validation of AVHRR Pathfinder SSTs over theMediterraneanSea, Geophys. Res.Lett.,27 (2), 241-244, http://dx.doi.org/10.1029/1999GL002357

Ginzburg A., Kostianoy A., Sheremet N., 2004, Seasonal and interannual variability of theBlack Seasurfacetemperature as revealedfromsatellitedata(1982-2000),J. MarineSyst.,52 (1-4), 33-50, http://dx.doi.org/10.1016/j.jmarsys.2004.05.002

Ferrarese S., CassardoC., Elmi A., Genovese R., Longhetto A., Manfrin M., Richiardone R., 2009, Air-seainteractions in the Adriaticbasin:simulations of Bora and Sirocco wind events, Geofizyka, 26 (2), 157-170.

Fujino J., Nair R., Kainuma M., Masui T., Matsuoka Y., 2006, Multigas mitigation analysison stabilizationscenariosusingaimglobal model,Energ.J., 3 (SI), 343-354.

Jiang Q., Ronald B., Doyle J., 2003, The nature of the mistral: Observations and modelling of two MAP events, Q. J. Roy. Meteor. Soc., 129 (588), 857-875, http://dx.doi.org/10.1256/qj.02.21

Jung T., Ferranti L., Tompkins M., 2006, Response to the summer of 2003 Mediterranean SST anomalies over Europe and Africa, J. Climate, 19 (20), 5439-5454, http://dx.doi.org/10.1175/JCLI3916.1

IPCC, 2007, Climate change 2007: synthesis report. Contribution of working groups I-III to the Fourth assessment report of the Intergovernmental panel on climate change, Cambridge Univ. Press, Cambridge.

Klein B., Roether W., Manca B., Bregant D., Beitze V., Kovacevic V., Luchetta A., 1999, The large deep water transient in the Eastern Mediterranean, Deep-Sea Res. Pt. I, 46 (3), 371-414, http://dx.doi.org/10.1016/S0967-0637(98)00075-2

Kotroni V., Lagouvardos K., Lalas D., 2001, The effect of the island of Crete on the Etesian winds over the Aegean Sea, Q. J. Roy. Meteor. Soc., 127 (576), 1917-1937, http://dx.doi.org/10.1002/qj.49712757604

LargeW., Pond S., 1981, Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11 (3), 324-336, http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2

Lelieveld J., Berresheim H., Borrmann S., Crutzen P., Dentener J., Fischer H., Feichter J., Flatau P. J., Heland J., Holzinger R., Korrmann R., Lawrence M. G., Levin Z., Markowicz K. M., Mihalopoulos N., Minikin A., Ramanathan V., De Reus M., Roelofs G. J., Scheeren H. A., Sciare J., Schlager H., Schultz M., Siegmund P., Steil B., Stephanou E.G., Stier P., Traub M., Warneke C., Williams J., Ziereis H., 2002, Global air pollution crossroads over the Mediterranean, Science, 298, 794-799, http://dx.doi.org/10.1126/science.1075457

Leitz M., 1999, Ionian sea surface temperature: satellite and drifter observations, May to October 1995, M. Sc. thesis, Naval Postgrad. School, Monterey, 106 pp. Lionello P., Gacic M., Gomis D., Garcia-Herrera R., Giorgi F., Planton S., Trigo R., Theocharis A., Tsimplis M., Ulbrich U., Xoplaki E., 2010, Program focuses on climate of the Mediterranean region, EOS T. Am. Geophys. Un., 93 (10), 105-106, http://dx.doi.org/10.1029/2012EO100001

Luterbacher J., Dietrich D., Xoplaki E., Grosjean M., Wanner H., 2004, European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303 (5663), 1499-1503, http://dx.doi.org/10.1126/science.1093877

Marullo S., Buongiorno Nardelli B., Guarracino M., Santoleri R., 2007, Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR Sea Surface Temperatures (1985 to 2005). Re-analysis and validation, Ocean Sci., 3, 299-310, http://dx.doi.org/10.5194/os-3-299-2007

Marullo S., Santoleri R., Malanotte-Rizzoli P., Bergamasco A., 1999, The sea surface temperature field in the Eastern Mediterranean from advanced very high resolution radiometer (AVHRR) data: Part II. Interannual variability, J. Mar. Syst., 20 (1-4), 83-112, http://dx.doi.org/10.1016/S0924-7963(98)00072-4

Metaxas A., Bartzokas A., 1994, Pressure covariability over the Atlantic, Europe and N. Africa. Application: Centers of action for temperature, winter precipitation and summer winds in Athens, Greece, Theor. Appl. Climatol., 49 (1), 9-18, http://dx.doi.org/10.1007/BF00866284

Millot C., 2005, Circulation in the Mediterranean Sea: evidences, debates and unanswered questions, Sci. Mar., 69 (S1), 5-21.

Nykjaer L., 2009, Mediterranean Sea surface warming 1985-2006, Climate Res., 39, 11-17, http://dx.doi.org/10.3354/cr00794

Omstedt A., 2011, Guide to process based modeling of lakes and coastal seas, Springer-Verlag, Berlin, Heidelberg, 258 pp., http://dx.doi.org/10.1007/978-3-642-17728-6

Parada M., Canton M., 1998, Sea surface temperature variability in Alboran sea from satellite data, Int. J. Remote Sens., 19 (13), 2439-2450, http://dx.doi.org/10.1080/014311698214541

Parry M., Canziani O., Palutikof J., Linden P., Hanson C., 2007, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York.

Poulain P., Menna M., Mauri E., 2012, Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data, J. Phys. Oceanogr., 42 (6), 973-990, http://dx.doi.org/10.1175/JPO-D-11-0159.1

Rixen M., Beckers J., Levitus S., Antonov J., Boyer T., Maillard C., Fichaut M., Balopoulos E., Iona S., Dooley H., Garcia M., Manca B., Giorgetti A., Manzella G., Mikhailov N., Pinardi N., Zavatarelli M., 2005, The Western Mediterranean Deep Water: a proxy for climate change, Geophys. Res. Lett., 32 (12), L12608, http://dx.doi.org/10.1029/2005GL022702

Riahi K., Gruebler A., Nakicenovic N., 2007, Scenarios of long-term socio-economic and environmental development under climate stabilization, Technol. Forecast Soc., 74 (4), 887-935, http://dx.doi.org/10.1016/j.techfore.2006.05.026

Shaltout M., El Gindy A., Omstedt A., 2013, Recent climate trends and future scenarios along the Egyptian Mediterranean coast, Geofizika, 32 (1), (in press). Shaltout M., Omstedt A., 2012, Calculating the water and heat balances of the Eastern Mediterranean basin using ocean modeling and available meteorological, hydrological and ocean data, Oceanologia, 54 (2), 199-232, http://dx.doi.org/10.5697/oc.54-2.199

Skliris N., Sofianos S., Gkanasos A., Axaopoulos P., Mantziafou A., Vervatis V., 2011, Long-term sea surface temperature variability in the Aegean Sea, Adv. Oceanogr. Limnol., 2 (2), 125-139, http://dx.doi.org/10.1080/19475721.2011.601325

Skliris N., Sofianos S., Gkanasos A., Mantziafou A., Vervatis V., Axaopoulos P., Lascaratos A., 2012, Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability, Ocean Dynam., 62 (1), 13-30, http://dx.doi.org/10.1007/s10236-011-0493-5

Somot S., Sevault F., DéquéM., 2006, Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulationmodel,Clim. Dynam.,27 (7-8),851-879, http://dx.doi.org/10.1007/s00382-006-0167-z

Taylor K.,Stouffer R.,Meehl G.,2012,An overview ofCMIP5 and the experiment design,BAMS, 93 (4),485-498, http://dx.doi.org/10.1175/BAMS-D-11-00094.1

Tsimplis M., RixenM., 2002, Sea level inthe Mediterranean:the contributionof temperature andsalinitychanges,Geophys. Res.Lett., 29 (23),2136, 4 pp., http://dx.doi.org/10.1029/2002GL015870

Trenberth K. E., Large W. G., Olson J. G., 1990, Themeanannual cycle in global ocean wind stress, J. Phys.Oceanogr., 20 (11),1742-1760, http://dx.doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2

Van Vuuren D.,Den Elzen M.,Lucas P., Eickhout B., Strengers B., Van Ruijven B., Wonink S., Van Houdt R., 2007, Stabilizinggreenhousegas concentrations at low levels: an assessmentof reductionstrategiesand costs,Climatic Change, 81 (2),119-159, http://dx.doi.org/10.1007/s10584-006-9172-9

VilibićI.,Grbec B.,Supić N., 2004, Dense water generationin the north Adriatic in 1999 and its recirculationalong the Jabuka Pit, Deep-Sea Res. Pt.I, 51 (11), 1457-1474, http://dx.doi.org/10.1016/j.dsr.2004.07.012

Zervakis V., Georgopoulos D., Drakopoulos P., 2000, The role of the North Aegean in triggering the recentEasternMediterranean climaticchanges,J. Geophys. Res., 105 (C11),103-126, http://dx.doi.org/10.1029/2000JC900131

full, complete article (PDF, 4949 KB)


Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov
Oceanologia 2014, 56(3), 445-460
http://dx.doi.org/10.5697/oc.56-3.445

Gennady G. Matishov1,2, Sergei L. Dzhenyuk1, Denis V. Moiseev1,*, Aleksandr P. Zhichkin1
1Murmansk Marine Biological Institute of Kola Science Centre, Russian Academy of Sciences,
Vladimirskaya St. 17, 183010 Murmansk, Russia;
e-mail: Denis_Moiseev@mmbi.info
*correspondung author
2South Science Centre of Russian Academy of Sciences,
Chekhova Av. 41, 344006 Rostov-on-Don, Russia

keywords: Climate, air, sea ice, anomalies, Voeikov axis, blocking

Received 5 August 2013, revised 18 February 2014, accepted 21 February 2014.

Abstract

This paper analyses the anomalous hydrometeorological situation that occurred at the beginning of 2012 in the seas of the Russian Arctic and Russian South. Atmospheric blocking in the temperate zone and the extension of the Siberian High to the Iberian Peninsula (known as the Voeikov et al. axis) led to a positive anomaly of air and water temperatures and a decrease in the ice extent in the Barents and Kara Seas. At the same time a prolonged negative air temperature anomaly was recorded in central and southern Europe and led to anomalously severe ice conditions in the Sea of Azov. Winter hydrographic conditions in the Barents and Kara Seas are illustrated by a unique set of observations made using expendable bathythermosalinographs (XCTD).

  References ref

AlekseevG. V.,IvanovN. E.,PnyushkovA. V.,Balakin A. A.,2010,Climate alterationsin the marineArcticat the beginning of XXI century,Probl.Arct. Antarct., 3 (86), 22-34, (in Russian).

Atlasof the oceans.ArcticOcean, 1980, MMF of the USSR, 160 pp., (in Russian). Changeabilityof natural conditionsin the shelf zone of the Barentsand Kara seas, 2004, SPb.,AARI, 432 pp.,(in Russian).

FrolovI. E.,GudkovichZ. M., KarklinV. P.,SmolyanitskiyV. M., 2010, Changes ofthe ArcticandAntarctic climate- resultofnaturalcause,Probl.Arct. Antarct., 2 (85), 52-61, (in Russian).

Hydrometeorology andhydrochemistryoftheUSSRseas,1990, [in:] Volume1. The BarentsSea. Issue 1. Hydrometeorologicalconditions,L. Gidrometeoizdat, Leningrad,280 pp., (in Russian).

DzerdzeyevskiyB. L.,Kurganskaya V. M.,VitvitskayaZ. M.,1946,Typification ofcirculating mechanismsin northern hemisphere andcharacteristic of synopticseasons,Synopt. Meteorol., 2 (21), Cent. Inst.Forecast. M; Tr.Res. Establishm., L. Gidrometeoizdat, 80 pp., (in Russian).

Kattsov V. M., Porifiryev B. N., 2011, Climate changes and its impact on environment and economy of the Arctic, [in:] The Arctic:zone of peace and collaboration, A. V. Zagorskiy (ed.),IWEIRRAS,. 7-26, (in Russian).

LevermannA.,BamberJ. L.,DrijfhoutS.,GanopolskiA.,HaeberliW.,Harris N. R. P., Huss M., Krüger K., Lenton T. M., Lindsay R. W., Notz D., Wadhams P.,WeberS.,2012, Potential climatictransitions withprofoundimpacton Europe, Climatic Change, 110 (3-4), 845-878, http://dx.doi.org/10.1007/s10584-011-0126-5

Liu J., CurryJ. A.,WangH.,Song M., HortonR. M., 2012, Impactof declining Arcticsea iceonwintersnowfall,PNAS,109 (11),4074-4079, http://dx.doi.org/10.1073/pnas.1114910109

Loeng H., 1991, Featuresof the physicaloceanographicconditionsof the Barents Sea, Polar Res., 10 (1), 5-18, http://dx.doi.org/10.1111/j.1751-8369.1991.tb00630.x

MatishovG. G.,2008,Theinfluence ofclimatic andiceregimevariabilityon navigation,HeraldRuss.Acad.Sci.,78 (5),457-463, http://dx.doi.org/10.1134/S1019331608050043

MatishovG. G.,DzhenyukS. L.,2012, Arctic challengesandproblemsofpolar science, HeraldRuss. Acad.Sci., 82 (5), 355-362, http://dx.doi.org/10.1134/S1019331612050073

Matishov G. G., Dzhenyuk S. L., Zhichkin A. P., Moiseev D. V., 2011, Climate of the Western Arctic seas at the beginning of XXI century, Izvestiya RAS, Geograph. Ser., Vol. 3, 17-32, (in Russian). MatishovG. G.,GargopaYu. M., ChikinA. L., 2012a, Modelingof ice formation intheSea of Azovwithaccountfortheclimatictrendintheearlytwenty- first century,Dokl. Earth Sci., 445 (2), 1011-1014, http://dx.doi.org/10.1134/S1028334X12080132

MatishovG. G.,MatishovD. G.,Moiseev D. V.,2009, InflowofAtlantic-origin waters to the BarentsSea along glacial troughs, Oceanologia, 51 (3), 293-312, http://dx.doi.org/10.5697/oc.51-3.321

MatishovG., Moiseev D., LyubinaO., Zhichkin A., DzhenyukS., Karamushko O., FrolovaE., 2012b, Climateand cyclic hydrobiological changes of the Barents Seafromthetwentiethto twenty-first centuries, PolarBiol.,35 (12),1773-1790, http://dx.doi.org/10.1007/s00300-012-1237-9

MatskovskiyV. V.,KononovaN. K.,2011, Studyingof circulationfluctuation of the northern hemisphereatmosphereusing the method of digital mapping, Izv. RAS. Geogr. ser. 6, 100-114, (in Russian).

MoiseevD. V.,KulyginV. V.,BerdnikovS. V.,2012,Joint MMBI, SSCRAS and NODC NOAA approach to oceanographic and hydro-biological database organizationfor the Arcticand Southern seas of Russia,Ber.Polar Meeresforsch., Rep. PolarMarine Res. No. 640 137-151.

Moore G. W. K.,RenfrewI. A.,2012, ColdEuropeanwinters: interplaybetween theNAOand theEastAtlantic mode,Atmos.Sci.Let.,13 (1),1-8, http://dx.doi.org/10.1002/asl.356

Nordenskiöld A. E., 1882, DieUmsegelung Asiensund Europasauf der Vega, J. N. Brodhaus, Leipzig, 1186 pp.

OverlandJ. E.,WangA.,2010, Large-scaleatmosphericcirculationchangesare associated with the recentlossofArcticseaice,TellusA, 62 (1),1-9, http://dx.doi.org/10.1111/j.1600-0870.2009.00421.x

ShakinaN. P.,IvanovaA. R., 2010, Theblocking anticyclones: the state of studies and forecasting, Russ. Meteorol. Hydrol., 35 (11), 721-730, http://dx.doi.org/10.3103/S1068373910110014

Stephenson S. R., Smith L. C., BrighamL. W., Agnew J. A., 2013, Projected21st- century changes to Arcticmarine access, Climatic Change, 118 (3-4), 885-899, http://dx.doi.org/10.1007/s10584-012-0685-0

Tourpali K.,ZanisP.,2013,Anticyclonicblocking effectsoverEuropefroman ensemble of regional climate models in recent past winters, [in:] Advances in meteorology, climatology and atmospheric physics, C. G. Helmis & P. T. Nastos (eds.),SpringerAtmos. Sci., Heidelberg,New York, Dordrecht, London,773-778.

VangengeimG. Y.,1940, Long-rangeforecastoftemperature and riversopening, Tr.State Hydrol. Inst., 10, 207-236, (in Russian).

Vinje T., 2001, Anomaliesand trends of sea-ice extent and atmospheric circulation intheNordic Seasduringthe period1864-1998, J. Clim.,14 (3),255-267, http://dx.doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2

Voeikov A. I., 1884, Klimaty zemnogo shara,v OsobennostiRossii,St. Petersburg, [Reprint., 1948, Izdatel’stvo Akad. Nauk SSSR, Moscow)].

Zhichkin A. P., 2010, Climaticice anomalies of the Barents Sea.Nature of the shelf and archipelagoes ofEuropeanArctic,[in:]ComplexstudiesofSpitsbergen’s nature (Murmansk, 27-30 October 2010), Proc. Int. Sci. Conf., 10, M.: GEOS, 133-137, (in Russian).

full, complete article (PDF - compatibile with Acrobat 4.0), 2547 KB


Field study of film spreading on a sea surface
Oceanologia 2014, 56(3), 461-475
http://dx.doi.org/10.5697/oc.56-3.461

Aleksandr E. Korinenko1,*, Vladimir V. Malinovsky1,2
1Marine Hydrophysical Institute of the NAS of Ukraine,
Kapitanskaya 2, Sevastopol 299011, Ukraine;
e-mail: korinenko.alex@gmail.com
*correspondung author
2Small Enterprise DVS LTD,
Kapitanskaya 4, Sevastopol 299011, Ukraine

keywords: Oil slick, film spreading, sea surface pollution, field study

Received 20 December2012, revised 14 March 2014, accepted 31 March 2014.

Abstract

The results of a field study of surface film spreading on the sea surface are presented.The experiments were carried out in the coastal zone of the Black Sea in a wide range of wind speeds and wave conditions. Vegetable oil was used for preparing the surfactants. It was found that at moderate and strong wind speeds the slicks take on a shape similar to an ellipse and are orientated in the direction of the air flow. An increase in the speed of the spreading slick along its major axis with strongwind was discovered.

  References ref

Bendat J. S., Piersol A. G., 1999, Random dataanalysis and measurement procedures, Wiley, New York, 594 pp.

Boniewicz-SzmytK.,PogorzelskiS. J., 2008, Crudeoilderivativesonseawater: signaturesofspreadingdynamics,J. MarineSyst.,74 (Supp.), 41-51, http://dx.doi.org/10.1016/j.jmarsys.2007.11.015

Buckmaster J.,1973,Viscous-gravityspreadingofanoilslick,J. FluidMech., 59 (3), 481-491, http://dx.doi.org/10.1017/S0022112073001667

CampD. W.,BergJ. C.,1987,Thespreadingofoilonthewater inthesur- face-tensionregime, J. Fluid Mech., 184, 445-462, http://dx.doi.org/10.1017/S0022112087002969

Dussaud A. D., Troian S. M., 1998,Dynamics ofspontaneousspreadingwith evaporation on a deep fluid layer, Phys.Fluids,10 (1),23-38, http://dx.doi.org/10.1063/1.869546

Elliott A. J., 1986, Shear diffusionand the spread of oil in the surface layers of the North Sea, Ocean Dynam.,39 (3), 113-137.

Fay J. A., 1969, The spread of oil slicks on a calm sea, [in:] Oilon the sea, D. Hoult (ed.),Plenum,New York, 114 pp.

Foda M., CoxR. G., 1980,The spreading ofthin liquidfilms onawater- air interface,J.FluidMech.,101, 33-51, http://dx.doi.org/10.1017/S0022112080001516

Hoult D., 1972, Oil spreading on the sea, Annu. Rev. Fluid Mech., 4, 341-368, http://dx.doi.org/10.1146/annurev.fl.04.010172.002013

Large W. G., Pond S., 1981, Open ocean momentum flux measurements in moderate tostrongwinds,J. Phys.Oceanogr.,11 (3),324-336, http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2

Lehr W. J., Cekirge H. M., FragaR. J., Belen M. S., 1984a, Empiricalstudies of the spreading of oil spills, Oil Petrochem. Pollut., 2 (1), 7-12, http://dx.doi.org/10.1016/S0143-7127(84)90637-9

LehrW. J., Fraga R. J., BelenM. S.,CekirgeH. M.,1984b,Anewtechnique to estimate initialspillsizeusingamodified Fay-type spreadingformula, Mar. Pollut. Bull., 15 (9), 326-329, http://dx.doi.org/10.1016/0025-326X(84)90488-0

Phillips W. R. C.,1997,Onthespreadingradiusofsurfacetension drivenoil on deepwater,Appl.Sci.Res.,57 (1), 67-80, http://dx.doi.org/10.1007/BF02528764

Svitova T. F.,Hill R. M., Radke C. J.,1999, Spreading of aqueous dime- thyldidodecylammoniumbromide surfactant droplets overliquidhydrocar- bonsubstrates, Langmuir, 15 (21), 7392-7402, http://dx.doi.org/10.1021/la981683n

full, complete article (PDF - compatibile with Acrobat 4.0), 889 KB


Groundwater flow due to a nonlinear wave set-up on a permeable beach
Oceanologia 2014, 56(3), 477-496
http://dx.doi.org/10.5697/oc.56-3.477

Anna Przyborska
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland;
e-mail: aniast@poczta.onet.pl

keywords: Pore pressure, permeable beach, circulation of groundwater, filtering, modelling, set-up

Received 12 March 2013, revised 19 February 2014, accepted 21 February 2014.

Abstract

Water flow through the beach body plays an important role in the biological status of the organisms inhabiting the beach sand. For tideless seas, the groundwater flow in shallow water is governed entirely by the surface wave dynamics on the beach. As waves propagate towards the shore, they become steeper owing to the decreasing water depth and at some depth, the waves lose their stability and start to break. When waves break, their energy is dissipated and the spatial changes of the radiation stress give rise to changes in the mean sea level, known as the set-up. The mean shore pressure gradient due to the wave set-up drives the groundwater circulation within the beach zone. This paper discusses the circulation of groundwater resulting from a nonlinear set-up. The circulation of flow is compared with the classic Longuet-Higgins (1983) solution and the time series of the set-upis considered for a 24 h storm. Water infiltrates into the coastal aquifer on the upper part of the beach near the maximum run-up and exfiltration occurs on the lower part of the beach face near the breaking point.

  References ref

Biot M. A., 1956, Theoryof propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range, II. Higher frequency range, J. Acoust. Soc. Am., 28 (2), 168-191, http://dx.doi.org/10.1121/1.1908239

DallyW. R.,DeanR. G.,DalrympleR. A.,1985,Waveheightvariationacross beaches of arbitraryprofile, J. Geophys.Res., 90, C6, 11917-11928, http://dx.doi.org/10.1029/JC090iC06p11917

HolthuijsenL.H.,2007, Wavesinocenicandcoastalwaters,CambridgeUniv. Press,New York, http://dx.doi.org/10.1017/CBO9780511618536

Longuet-HigginsM. S., 1983, Waveset-up,percolationandundertowinthesurf zone, Proc. Roy. Soc. London, A390, 283-291, http://dx.doi.org/10.1098/rspa.1983.0132

Longuet-Higgins M. S., Stewart R. W.,1962, Radiation stressand masstransport in gravity waves, with applicationto surf beats, J. FluidMech., 13, 481-504, http://dx.doi.org/10.1017/S0022112062000877

Longuet-HigginsM. S.,StewartR. W.,1964, Radiation stressesinwaterwaves, a physical discussionwith applications,Deep Sea Res., 11, 529-562.

Massel S. R., 2001, Circulationof groundwaterdue to wave set-up on a permeable beach, Oceanologia, 43 (3), 279-290.

MasselS. R.,Przyborska A.,Przyborski M.,2004, Attenuation ofwave-induced groundwater pressurein shallow water.Part1, Oceanologia, 46 (3), 383-404.

MasselS. R.,Przyborska A.,Przyborski M.,2005, Attenuation ofwave-induced groundwater pressureinshallow water.Part2. Theory, Oceanologia,47 (3), 291-323.

MoshagenH.,Torum A.,1975,Waveinducedpressuresinpermeablesea-beds, J. Waterway Div., 101, 49-57.

SingamsettiS. R.,WindE. G.,1980, Breakingwaves:characteristics of shoaling and breakingperiodicwavesnormallyincidenttoplanebeachesof constant slope, Delft Hydr. Lab., Rep. M1237, 80.

Verruijt A., 1969, Elasticstorage of aquifers.Flow through porous media,R. J. M. Deweist, Acad. Press,New York, 331-376.

full, complete article (PDF - compatibile with Acrobat 4.0), 2858 KB


Relative infaunal bivalve density assessed from split beam echosounder angular information
Oceanologia 2014, 56(3), 497-521
http://dx.doi.org/10.5697/oc.56-3.497

Noela Sánchez-Carnero1,*, Daniel Rodríguez-Prez2, Nuria Zaragozá3, Victor Espinosa3, Juan Freire4,5
1Grupo de Oceanografá Física, Universidade de Vigo,
Campus Lagoas-Marcosende, 36200 Vigo, Spain;
e-mail: noelas@gmail.com
*corresponding author
2Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED,
C/Paseo de la Senda del Rey, 28040 Madrid, Spain
3Institut d'Investigació per a la Gestió Integrada de Zones Costaneres,
C/Paranimf 1, 46730 Grau de Gandia, Spain
4Barrabés Next,
C. Serrano 16-1, 28001 Madrid, Spain
5Teamlabs,
C. Gobernador 26, 28014 Madrid, Spain

keywords: Shellfish beds, stock assessment, split-beam echosounder, angular information, Haralick textural features, benthic habitat mapping

Received 30 April2013, revised 30 January 2014, accepted 4 March 2014.

Abstract

Management of shellfish resources requires a spatial approach where mapping is a key tool. Acoustic techniques have been rarely used to map infaunal organisms with a patchy distribution. We propose and test the use of split-beam echosounder angular information to assess razor shell presence and relative density. Our statistical approach combines textural analysis of angular echograms, standard unsupervised multivariate methods andhierarchical classification through dendrograms to identify groups of locations with similar clam densities. The statistical analyses show that the classification is consistent with groundtruthing data and that results are insensitive to boat motion or seabed granulometry. The method developed here constitutes a promising tool for assessing the relative density of razor clam grounds.

  References ref

Adams C., Harris B., Marino II M., Stokesbury K., 2010, Quantifying sea scallop bed diameter on Georges Bank with geostatistics, Fish. Res., 106 (3), 460-467, http://dx.doi.org/10.1016/j.fishres.2010.09.021

Allen Y., Wilson C., Roberts H., Supan J., 2005, High resolution mapping and classification of oyster habitats in Nearshore Louisiana using sidescan sonar, Estuar. Coasts, 28 (3), 435-446, http://dx.doi.org/10.1007/BF02693925

Anderson J., Van Holliday D., Kloser R., Reid D., Simard Y., 2008, Acoustic seabed classification: current practice and future directions, ICES J. Mar. Sci., 65 (6), 1004-1011, http://dx.doi.org/10.1093/icesjms/fsn061

Bodholt H., Ness H., Solli H., 1989, A new echo-sounder system, Proc. Ins. Ac., 11, 123-130.

Boswell K., Wilson M., Wilson C., 2007, Hydroacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estuarine habitats in Louisiana, Estuar. Coasts, 30 (4), 607-617.

Burns D., Queen C., Sisk H., Mullarkey W., Chivers R., 1989, Rapad and convenient acoustic sea-bed discrimination for fisheries applications, Proc. Ins. Ac., 11, 169-178.

Cutter G., Demer D., 2010, Multifrequency biplanar interferometric imaging, IEEE Geosci. Remote S., 7 (1), 171-175, http://dx.doi.org/10.1109/LGRS.2009.2029533

Darriba Couñago S., Fernéndez Tajes J., 2011, Systematics and distribution, [in:] Razor clams: biology, aquaculture and fisheries, A. Guerra Díaz, C. Lodeiros Seijo, M. Baptista Gaspar & F. da Costa Gonzélez (eds.), Xunta de Galicia, Consellería do Mar, ISBN:978-84-453-4986-1

DeAlteris J., 1988, The application of hydroacoustics to the mapping of subtidal oyster reefs, J. Shellfish Res., 7, 41-45.

Demer D., Cutter G., Renfree J., Butler J., 2009, A statistical-spectral method for echo classification, ICES J. Mar. Sci., 66 (6), 1081-1090, http://dx.doi.org/10.1093/icesjms/fsp054

Diaz R., Solana M., Valente R., 2004, A review of approaches for classifying benthic habitats and evaluating habitat quality, J. Environ. Manage., 73 (3), 165-181, http://dx.doi.org/10.1016/j.jenvman.2004.06.004

MacLennan D.N., Copland P., Amstrong E., Simmonds E., 2004, Experiments on the discrimination of fish and sea bed echoes, ICES J. Mar. Sci., 61 (2), 201-210, http://dx.doi.org/10.1016/j.icesjms.2003.09.005

Fismare S. L., 2011, Avaliación da pesquería de navalla (Ensis arcuatus) da ría de Pontevedra cara unha explotación sostible: estudio e integración dos aspectos biolóxicos e hidrodinémicos na súa explotación, Tech. rep., Fismare Innov. Sostenibil. S. L., A Coruñna, Spain.

Folk R. L., 1954, The distinction between grain size and mineral composition in sedimentary rock nomenclature, J. Geol., 62 (4), 344-359, http://dx.doi.org/10.1086/626171

Foote K., 1986, Measurement of fish target strength with a split-beam echo sounder, J. Acoust. Soc. Am., 80, 612-621, http://dx.doi.org/10.1121/1.394056

Foote K., Kristensen F., Solli H., 1984, Trial of a new split-beam echosounder, Tech. Rep. Doc. 1984/B: 21, ICES.

Grizzle R., Ward L., Adams J., Dijkstra S., Smith B., 2005, Mapping and characterizing oyster reefs using acoustic techniques, underwater videography and quadrat counts, [in:] Am. Fish. Soc. Symp., 41, 152-159.

Haralick R., Shanmugam K., Dinstein I., 1973, Textural features for image classification, IEEE T. Syst. Man Cyb., 3 (6), 610-621, http://dx.doi.org/10.1109/TSMC.1973.4309314

Hennig C., 2008, Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods, J. Multivariate Anal., 99 (6), 1154-1176, http://dx.doi.org/10.1016/j.jmva.2007.07.002

Holme N.A., 1954, The ecology of British species of Ensis, J. Mar. Biol. Assoc. UK, 33 (1), 145-172, http://dx.doi.org/10.1017/S0025315400003532

Hutin E., Simard Y., Archambault P., 2005, Acoustic detection of a scallop bed from a single-beam echosounder in the St. Lawrence, ICES J. Mar. Sci., 62 (5), 966-983, http://dx.doi.org/10.1016/j.icesjms.2005.03.007

Jackson D., Richardson M., 2007, High-frequency seafloor acoustics, Springer, New York, 616 pp.

Jamieson G., 1993, Marine invertebrate conservation: evaluation of fisheries overexploitation concerns, Am. Zool., 33 (6), 551-567.

Jamieson G., Campbell A., 1998, Estimating king crab (Paralithodes camtschaticus) abundance from commercial catch and research survey data, Proc. North Pacific Symp. Invertebrate Stock Assess. Manag., NRC Res. Press, 73-83.

JiangPing T., Ye Q., XeChang T., JianBo C., 2009, Species identification of Chinese sturgeon using acoustic descriptors and ascertaining their spatial distribution in the spawning ground of Gezhouba Dam, Chinese Sci. Bull., 54 (21), 3972-3980, http://dx.doi.org/10.1007/s11434-009-0557-9

Kostylev V. E., 2012, Benthic habitat mapping from seabed acoustic surveys: do implicit assumptions hold?, [in:] Sediments, morphology and sedimentary processes on continental shelves: advances in technologies, research and applications, M. Li, C. Sherwood & P. Hill (eds.), Wiley-Blackwell, Chichester, 405-416.

Kostylev V. E., Courtney R.C., Robert G., Todd B. J., 2003, Stock evaluation of giant scallop (Placopecten magellanicus) using high-resolution acoustics for seabed mapping, Fish. Res., 60 (2-3), 479-492, http://dx.doi.org/10.1016/S0165-7836(02)00100-5

Legendre P., Ellingsen K., Björnbom E., Casgrain P., 2002, Acoustic seabed classification: improved statistical method, Can. J. Fish. Aquat. Sci., 59 (7), 1085-1089, http://dx.doi.org/10.1139/f02-096

Lindenbaum C., Bennell J., Rees E., McClean D., Cook W., Wheeler A., Sanderson W., 2008, Small-scale variation within a Modiolus modiolus (Mollusca: Bivalvia) reefin theIrishSea: I. Seabed mappingand reef morphology,J. Mar.Biol. Assoc. UK,88 (1),133-141, http://dx.doi.org/10.1017/S0025315408000374

LurtonX., 2002, Anintroduction to underwateracoustics.Principles and applications, Springer-Verlag, New York.

LyonsP., 2005,The potentialimpact of shell fragment distributionson high- frequency seafloor backscatter,IEEEJ.Ocean.Eng.,30 (4),843-851, http://dx.doi.org/10.1109/JOE.2005.862082

Morris L., Ball D., 2006, Habitat suitability modeling of economically important fish species with commercial fisheries data, ICES J. Mar.Sci., 63 (9),1590-1603, http://dx.doi.org/10.1016/j.icesjms.2006.06.008

OrłowskiA., 1982,Application of multiple echoesenergymeasurementsfor evaluation of sea bottom type, Oceanologia, 19, 61-78.

Peirson G., Frear P., 2003,Fixedlocation hydroacousticmonitoringof fish populations in the tidal River Hull, north-east England, in relation to water quality,Fisheries.Manag. Ecol.,10 (1),1-12, http://dx.doi.org/10.1046/j.1365-2400.2003.00316.x

Raineault N., Trembanis A., Miller D., 2011, Mapping benthic habitats in Delaware Bay and the coastal Atlantic:acoustic techniques provide greater coverage and high resolution in complex, shallow-water environments, Estuar. Coast.,35 (2), 682-699, http://dx.doi.org/10.1007/s12237-011-9457-8

Rodríguez-Pérez D., Sénchez-Carnero N., Freire J., 2013, A pulse-length correction to improve energy-based seabed classification in coastal areas, (submitted).

Schimel A., Healy T.,JohnsonD., ImmengaD., 2010, Quantitative experimental comparison of single-beam,sidescan,and multibeambenthic habitatmaps, ICESJ. Mar. Sci.,67 (8), 1766-1779, http://dx.doi.org/10.1093/icesjms/fsq102

SimmondsE., MacLennanD., 2005, Fisheries acoustics: theory and practice, 2nd edn., Blackwell Publ.,Oxford, http://dx.doi.org/10.1002/9780470995303

Snellen M., SimonsD. G., Riethmueller R., 2008,Highfrequencyscattering measurements for mussel bed characterisation, [in:] Acoustics̓08, 5253-5258.

von Szalay P. G., McConnaughey R. A., 2002, The effect of slope and vessel speed on the performance of a single beam acoustic seabed classification system, Fish. Res., 56 (1), 99-112.

WildishD.,FaderG.,LawtonP.,MacDonaldA.,1998, The acoustic detection and characteristics of sublittoral bivalve reefs in the Bay of Fundy, Cont.Shelf Res., 18 (1), 105-113, http://dx.doi.org/10.1016/S0278-4343(98)80002-2

Zaragozé N., Sànchez-Carnero N., Espinosa V., Freire J., 2010, Acoustic techniques for solenoid bivalve mapping,[in:]Proc.Europ.Conf.Underwater Acoust., Vol. 1, 139-144.

full, complete article (PDF - compatibile with Acrobat 4.0), 859 KB


DOC and POC in the water column of the southern Baltic. Part I.Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter
Oceanologia 2014, 56(3), 523-548
http://dx.doi.org/10.5697/oc.56-3.523

Anna Maciejewska, Janusz Pempkowiak*
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: pempa@iopan.gda.pl
*corresponding author

keywords: Deeps: Bornholm, Gdańsk, Gotland; ranges: seasonal, vertical; sources and sinks: primary production, bacterial decomposition, zooplankton, river run-off, inflows from North Sea

Received 14 November 2013, revised 21 January 2014, accepted 22 January 2014.

This study was supported by the Baltic-C/BONUS Plus EUFP6 Project, statutory activities of Institute of Oceanology PAN, Sopot and the Polish Ministry of Science and Higher Education, grant No. N N306 404338.

Abstract

Organic substances are important components of the marine environment as they determine the properties of seawater and the key biogeochemical processes taking place in it. Organic carbon (OC) is a measure of organic matter. For practical purposes, OC is divided into dissolved organic carbon (DOC) and particulate organic carbon (POC). Both DOC and POC play a major role in the carbon cycle, especially in shelf seas like the Baltic, where their concentrations are substantial. In a three-year study (2009-2011) seawater samples for DOC and POC measurements were collected from stations located in the Gdańsk Deep, the Gotland Deep and the Bornholm Deep. The accuracy and precision of analysis were satisfactory; the recovery was better than 95%, and the relative standard deviation was 4% (n = 5). Concentrations of chlorophyll a, phaeopigment a, salinity, pH and temperature were also measured in the same samples. These parameters were selected as proxies of processes contributing to DOC and POC abundance.
The aim of the study was to address questions regarding the vertical, horizontal and seasonaldynamics of both DOC and POC in the Baltic Sea and the factors influencing carbon concentrations. In general, the highest concentrations of both DOC and POC were recorded in the surface water layer (DOC ~4.7 mg dm-3, POC ~0.6 mg dm-3) as a consequence of intensive phytoplankton activity, and in the halocline layer (DOC ~5.1 mg dm-3, POC ~0.4 mg dm-3). The lowest DOC and POC concentrations were measured in the sub-halocline water layer, where the values did not exceed 3.5 mg dm-3 (DOC) and 0.1 mg dm-3 (POC). Seasonally, the highest DOC and POC concentrations were measured during the growing season: surface DOC ~5.0 mg dm-3; sub-halocline DOC ~4.1 mg dm-3 andsurface POC ~0.9 mg dm-3, sub-halocline POC ~0.2 mg dm-3. The ANOVA Kruskal-Wallis test results indicate statistically significant differences among the three study sites regarding average concentrations, and concentrations in particular water layers and seasons. It shows that concentrations of DOC and POC differ in sub-basins of the Baltic Sea. The differences were attributed to the varying distances from river mouths to study sites or the different starting times and/or durations of the spring algal blooms. Statistically significant dependences were found between both DOC and POC concentrations and Chl a (phytoplankton biomass), pH (phytoplankton photosynthetic rate), pheo (zooplankton sloppy feeding), salinity (river run-off and North Sea water inflows) and water temperature (season). This was taken as proof that these factors influence DOC and POC in the study areas.


  References ref

Almroth-Rosell E., Eilola K., Hordoir R., Meier M.H. E, Hall P. O. J., 2011, Transport of fresh and resuspended particulate organic material in the Baltic Sea - a model study, J. Mar. Sys., 87 (1), 1-12, http://dx.doi.org/10.1016/j.jmarsys.2011.02.005

Amann T., Weiss A., Hartmann J., 2012, Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality, Estuar. Coast. Shelf Sci., 107, 112-121, http://dx.doi.org/10.1016/j.ecss.2012.05.012

Andrulewicz E., Szymelfenig M., Urbański J., Węsławski J.M, 1998, Morze Bałtyckie - o tym warto wiedzieć, Zesz. Zielonej Akad., 7, 1-115.

Bianchi T. S., Demetropoulos A., Hadjichristophorou M., Argyrou M., Baskaran M., Lambert C., 1996, Plant pigments as biomarkers of organic matter sources in sediments and coastal waters of Cyprus (eastern Mediterranean), Estuar. Coast. Shelf Sci., 42, 103-115, http://dx.doi.org/10.1006/ecss.1996.0008

Burska D., Pryputniewicz D., Falkowska L., 2005, Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea), Oceanologia, 47, 201-217.

Björck S., 1995, A review of the history of the Baltic Sea, 13.0-8.0 ka BP, Quater. Int., 27, 19-40, http://dx.doi.org/10.1016/1040-6182(94)00057-C

Chester R., 2003, Marine geochemistry, 2nd edn., Blackwell Sci., London, 506 pp. Collos Y., Husseini-Ratrema J., Bec B., Vaquer A., Hoai T. L., Rougier C., Pons V., Souchu P., 2005, Phaeopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon, Hydrobiologia, 550 (1), 83-93, http://dx.doi.org/10.1007/s10750-005-4365-1

Dera J., 1992, Marinephysics, Elsevier, Amsterdam, 515 pp.

Doney S. C., Linsay K., Moore J. K., 2003, Global ocean carbon cycle modeling, [in:] Ocean biogeochemistry, M. J. R. Doney (ed.), Springer-Verlag, Berlin, 217-238.

DunalskaJ. A., GórniakD., Jaworska B., Geiser E. E., 2012, Effectof temperature on organic matter transformationin a different ambient nutrient availability, Ecol. Eng., 49, 27-34, http://dx.doi.org/10.1016/j.ecoleng.2012.08.023

Dzierzbicka-Głowacka L., KulińskiK.,MaciejewskaA.,JakackiJ., Pempkowiak J.,2011, Numericalmodelling of POC dynamicsinthe Balticunder possible future conditionsdetermined by nutrients, light and temperature, Oceanologia, 53 (4), 971-992, http://dx.doi.org/10.5697/oc.53-4.971

Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., PempkowiakJ., 2010, Particulate Organic Carbonin the southern Baltic Sea:numerical simulations andexperimentaldata,Oceanologia, 52 (4),621-648, http://dx.doi.org/10.5697/oc.52-4.621

EdmanM., Omstedt A., 2013, Modeling the dissolved CO2 system in the redox environmentofthe BalticSea,Limnol.Oceanogr.,58 (1),74-92, http://dx.doi.org/10.4319/lo.2013.58.1.0074

Emelyanov E., 1995, Baltic Sea:geology, geochemistry, paleoceanography, pollution, P.P.Shirshov Inst.Oceanol. RussianAcad. Sci., Kaliningrad, 119 pp.

EmersonS. R.,Hedges J. I., 2008, Chemicaloceanography and the marinecarbon cycle, Cambridge Univ. Press, Cambridge, 453 pp., http://dx.doi.org/10.1017/CBO9780511793202

Ferrari G. M.,DowellM. D.,GrossiS.,Targa C.,1996,Relationship between the optical properties of chromophoric dissolved organic matter and total concentrationofdissolved organiccarbon inthe southernBalticSearegion, Mar. Chem.,55, 299-316, http://dx.doi.org/10.1016/S0304-4203(96)00061-8

Gardner W. D.,MishonovaA. V.,Richardson M. J.,2006,GlobalPOC concentrationsfrom in situ and satellite data, Deep-Sea Res. Pt. II, 53 (5-7), 718-740, http://dx.doi.org/10.1016/j.dsr2.2006.01.029

GranskogM. A.,KaartokallioH.,Thomas D. N,KuosaH.,2005,Influence of freshwater inflow on the inorganic nutrient and dissolved organic matter within coastalseaiceand underlyingwatersintheGulfofFinland(Baltic Sea), Estuar. Coast.Shelf Sci., 65 (1-2), 109-122.

Grzybowski W., 2003, Aredata on light-induced ammonium release from dissolved organic matter consistent?,Chemosphere, 52, 933-936, http://dx.doi.org/10.1016/S0045-6535(03)00290-X

Grzybowski W., Pempkowiak J., 2003, Preliminaryresults on low molecular weight organic substances dissolved in the waters of the Gulfof Gdańsk, Oceanologia, 45 (4), 693-704.

GustafssonE.,DeutschB.,GustafssonB. G.,HumborgC.,MörthC.-M.,2013, Carbon cyclinginthe BalticSea-the fateofallochthonous organiccarbon and its impact on air-sea CO2 exchange, J. Marine Syst.,129, 289-302, http://dx.doi.org/10.1016/j.jmarsys.2013.07.005

Hagström Å., Azam F., Kuparinen J., Zweifel U. L., 2001, Pelagic plankton growth and resource limitations in the Baltic Sea, [in:] A systems analysis of the Baltic Sea,F. V. Wullf,L. A. Rahm & P. Larsson (eds.),Ecol.Stud., 148, 177-210.

HakansonL.,1991,Charakterystykafizycznogeograficzna zlewiska Morza Bałtyckiego, Środowisko Morza Bałtyckiego,1, 1-37.

Hedges J. I., 2002, Whydissolved organic matter,[in:] Biogeochemistryof marine dissolved organicmatter,D. A. Hansell & C. A. Carlson(ed.),Elsevier Sci., San Diego, 1-33.

Hansell D. A, 2002, DOC in the Global Oceancarbon cycle, [in:] Biogeochemistryof marine dissolved organic matter, D. A. Hansell &C. A. Carlson (eds), Elsevier Sci., San Diego, 685-715, http://dx.doi.org/10.1016/B978-012323841-2/50017-8

The BACC Author Team, 2008, TheBALTEX Assessmentof Climate Changefor the BalticSea Basin, Springer-Verlag, Berlin, 1-34.

HELCOM, 2005, Nutrient pollution to the BalticSea in 2000,BalticSea Environ. Proc., 100, 24 pp.

HELCOM,2006, Developmentoftoolsforassessmentofeutrophicationinthe BalticSea, BalticSea Environ. Proc., 104, 64 pp.

HELCOM, 2007, Climatechange in the BalticSea area, Baltic Sea Environ. Proc., 111, 54 pp.

HoikkalaL.,LahtinenT., PerttilaM.,LignellR.,2012, Seasonaldynamicsof dissolved organic matter ona costal salinitygradient inthe northernBaltic Sea,Cont. Shelf Res., 45, 1-45, http://dx.doi.org/10.1016/j.csr.2012.04.008

IPCC, 2007, ClimateChangeSynthesisReport.Contributionof working groups I, II and IIIto the Fourth AssessmentReport of the Intergovernmental Panel on ClimateChange,Cambridge Univ. Press, Cambridge,73 pp.

JurkovskisA. K., FormychT. A.,Grotanie B. J., 1976, Ciklizmienienij fosfora, azota i organiczeski sviazannogo uglieroda v BaltijskomMorie, Okieanologia, 16, 79-86.

KoutsT., OmstedtA., 1993, Deepwater exchange inBalticProper,TellusA, 45 (4),311-324. http://dx.doi.org/10.1034/j.1600-0870.1993.t01-1-00006.x

Kuliński K., Pempkowiak J., 2008, Dissolvedorganic carbon in the southern Baltic Sea: Quantificationof factorsaffecting itsdistribution,Estuar.Coast.Shelf Sci., 78 (1),38-44, http://dx.doi.org/10.1016/j.ecss.2007.11.017

Kuliński K.,PempkowiakJ.,2011,The carbon budgetof the Baltic Sea, Biogeosciences, 8,3219-3230, http://dx.doi.org/10.5194/bg-8-3219-2011

KulińskiK., Schneider B., Hammer K., MachulikU., Schulz-BullD., 2014, The influenceofdissolvedorganicmatterontheacid-basesystemoftheBaltic Sea, J. Marine Syst., 132, 106-115, http://dx.doi.org/10.1016/j.jmarsys.2014.01.011

Leipe T., TauberF., ValliusH., VirtasaloJ., Uścinowicz Sz.,Kowalski N.,Hille S., Lindgren S., MyllyvirtaT., 2011, Particulateorganiccarbon(POC) in surfacesedimentsofthe BalticSea,Geo-Mar. Lett.,31 (3),175-188, http://dx.doi.org/10.1007/s00367-010-0223-x

LorentzC. J., 1967, Determinationofchlorophyll inpheo-pigments: spectropho- tomatric equations,Limnol. Oceanogr., 12 (2), 343-346, http://dx.doi.org/10.4319/lo.1967.12.2.0343

Maar M.,MollerE. F.,LarsenJ.,MadsenK. S.,Wan Z.,SheJ.,Jonasson L., Neumann T., 2011, Ecosystemmodelling acrossa salinitygradient from theNorthSeatotheBaltic Sea, Ecol.Model., 222 (10), 1696-1711, http://dx.doi.org/10.1016/j.ecolmodel.2011.03.006

MaricD.,FrkaS.,Godrija J., TomazicI.,PenezicA.,DjakovacT., Vo jvodic V., Precali R., GasparovicB., 2013, Organicmatter productionduringlate summerwinterperiodina temperatesea, Cont.ShelfRes.,55 (1), 52-65, http://dx.doi.org/10.1016/j.csr.2013.01.008

Meyer-Harms B., von Bodungen B.,1997, Taxon-specificingestion rates of natural phytoplankton by calanoid copepods in an estuarine environment (Pomeranian Bight, Baltic Sea) determined by cell counts and HPLC analyses of marker pigments, Mar. Ecol.-Prog.Ser., 153,181-190, http://dx.doi.org/10.3354/meps153181

Omstedt A., Axell L. B., 2003, Modeling the variations of salinity and temperature inthelarge Gulfs oftheBalticSea, Cont.ShelfRes.,23 (3-4), 265-294, http://dx.doi.org/10.1016/S0278-4343(02)00207-8

OmstedtA., Humborg C., Pempkowiak J., PerttiläM., Rutgersson A., Schneider B.,SmithB., 2012, BiogeochemicalcontrolofthecoupledCO2-O2system of the BalticSea:Areview of the results of Baltic-C, AMBIO, 43, 49-53, http://dx.doi.org/10.1007/s13280-013-0485-4

ParsonsT. R.,1969,Determination ofphotosyntheticpigmentsin sea-water. Asurvey of methods,UNESCO, Paris, 69 pp.

Pempkowiak J.,1983, C18reversed-phase trace enrichment of short- and long-chain (C2-C8-C20) fatty acids from dilute aqueous solutions and seawater, J. ChromatographyA, 258, 93-102, http://dx.doi.org/10.1016/S0021-9673(00)96401-X

Pempkowiak J., ChiffoleauJ.-F., Staniszewski A., 2000, Verticalandhorizontal distribution of selected heavy metals in the southern Balticoff Poland, Estuar. Coastal Shelf Sci., 51 (1),115-125, http://dx.doi.org/10.1006/ecss.2000.0641

Pempkowiak J., Walkusz-MiotkJ., Bełdowski J., Walkusz W., 2006, Heavy metals inzooplankton from the SouthernBaltic,Chemosphere,62 (10),1697-1708, http://dx.doi.org/10.1016/j.chemosphere.2005.06.056

Pempkowiak J., Widrowski M., KulińskiW., 1984, Dissolvedorganic carbon and particulate carbon in the Southern Baltic in September, Proc. XIV Conf. Baltic Oceanogr., IMGW, Gdynia, 699-713.

Sarmiento J. L., Gruber N., 2006, Oceanbiogeochemical dynamics, Princeton Univ. Press, New York, 526 pp.

Schneider B., Nausch G., Nagel K., WasmundN., 2003, Thesurfacewater CO2 budget forthe Baltic Proper:anewwaytodeterminenitrogenfixation, J. Marine Syst., 42 (1-2), 53-64.

Seager S. L.,SlabaughM. R.,2004, Chemistry fortoday: general,organic,and biochemistry,Thomson Brooks/Cole, Bedmont, 342 pp.

Segar D. A., 2012, Introduction to ocean science, 3rd edn., 1st electr. edn., ver. 3.0. 525 pp.

StedmonC. A.,MarkagerS.,Tranvik L.,KronbergL.,Slätis T.,Martinsen W., 2007, Photochemicalproduction of ammonium and transformationof dissolvedorganic matter inthe BalticSea,Mar.Chem., 104 (3-4),227-240, http://dx.doi.org/10.1016/j.marchem.2006.11.005

Stoń J., Kosakowska A., Łotocka M., Łysiak-Pastuszak E., 2002, Pigment composition in relation to phytoplankton community structure and nutrient content in the BalticSea,Oceanologia, 44 (4), 419-437.

SzymczychaB., Maciejewska A., Winogradow A., Pempkowiak J., 2014, Could submarine groundwater discharge be a significant carbon source to the southern BalticSea?, Oceanologia, 56 (2),327-347, http://dx.doi.org/10.5697/oc.56-2.327

ThomasH., Schneider B., 1999, TheseasonalcycleofcarbondioxideinBaltic Sea surface waters, J. Marine Syst., 22 (1), 53-67, http://dx.doi.org/10.1016/S0924-7963(99)00030-5

Thomas H., Pempkowiak J., WullfF., Nagel K., 2003, Autotrophy,nitrogen accumulation and nitrogen limitation in the BalticSea:a paradox or a buffer for eutrophication?,Geophys. Res. Lett., 30 (21), 2130 p.

Thomas H., Bozec Y., de Baar H. J. W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., Kattner G., Borges A. V., 2005, Thecarbon budget ofthe NorthSea, Biogeosciences, 2, 87-96, http://dx.doi.org/10.5194/bg-2-87-2005

Uścinowicz Sz., 2011, Geochemistry of BalticSeasurfacesediments,Polish Geol. Inst. - Nat. Res. Inst., Warsaw, 356 pp.

Voipio A., 1981, TheBalticSea,Elsevier, Amsterdam,148 pp.

WåhlströmI., OmstedtA., BjörkG., Anderson L.G., 2012, Modellingthe CO2 dynamicsinthe LaptevSea,Arctic Ocean: PartI, J. Mar.Syst., 102-104, 29-38, http://dx.doi.org/10.1016/j.jmarsys.2012.05.001

Wasmund N., Uhlig S., 2003, Phytoplankton trends in the BalticSea, J. Mar. Sci., 60, 177-186.

WitekZ.,OchockiS.,MaciejowskaM.,PastuszakM.,NakoniecznyJ., Podgórska B., Kownacka J. M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk(southern Baltic), Mar.Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169

Wożniak S., 2014,Simple statistical formulas for estimating biogeochemical propertiesofsuspendedparticulate matter inthe southernBalticSea potentially useful for optical remote sensing applications,Oceanologia, 56 (1), 7-39, http://dx.doi.org/10.5697/oc.56-1.007

full, complete article (PDF - compatibile with Acrobat 4.0), 461 KB


Genetic characteristics of three Baltic Zostera marina populations
Oceanologia 2014, 56(3), 549-564
http://dx.doi.org/10.5697/oc.56-3.549

Magdalena Gonciarz1,*, Józef Wiktor2, Agnieszka Tatarek2, Piotr Węgleński3, Anna Stanković1,4,5
1Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw,
Pawińskiego 5a, 02-106 Warsaw, Poland;
e-mail: m.gonciarz@biol.uw.edu.pl
*corresponding author
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
3Centre of New Technologies, University of Warsaw,
Żwirki i Wigury 93, 02-089 Warsaw, Poland
4Institute of Bioechemistry and Biophysics, Polish Academy of Sciences,
Pawińskiego 5a, 02-106 Warsaw, Poland;
5The Antiquity of Southern Europe Research Centre, University of Warsaw,
Krakowskie Przedmieście 32, 00-927 Warsaw, Poland

keywords: Baltic Sea, eelgrass, Zostera marina, microsatellites, population genetics

Received 23 December 2013, revised 17 March 2014, accepted 20 March 2014.

This work was financially supported by the project: "ZOSTERA: Restoration of ecosystem key elements in the inner Puck Bay".

Abstract

We performed genetic analyses of three Baltic eelgrass (Zostera marina) populations in Puck Bay (PB), Cudema Bay (CB) and Greifswalder Bodden (GB). The aim of this study was to identify the eelgrass population genetically closest to that from the PB, which could potentially serve as a reservoir for the restoration of the underwater meadows in this bay, seriously degraded in the past. We applied a 12-microsatellite assay to test the genetic distance between the target eelgrass populations. We found that the allelic richness values of the GB, PB and CB populations were 2.25, 3.77 and 3.50 respectively. The genetic diversity found in GB was low and could be explained by the population's history, whereas the diversity of CB was higher than expected in a population located at the edge of the species' range. Analyses of genetic differentiation and structure showed that of the three populations studied, PB and CB were closer to each other than to the GB population. The reasons for this differentiation in eelgrass populations and the implications of the results of their genetic analysis on the planned restoration of the PB populations are discussed.

  References ref

Andrulewicz E., 1997, An overview on lagoons in the Polish coastal area of the Baltic Sea, Int. J. Salt Lake Res., 6 (2), 121-134, http://dx.doi.org/10.1007/BF02441889

Arnaud-Haond S., Belkhir K., 2007, GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization, Mol. Ecol. Notes, 7 (1), 15-17, http://dx.doi.org/10.1111/j.1471-8286.2006.01522.x

Balloux F., Lugon-Moulin N., 2002, The estimation of population differentiation with microsatellite markers, Mol. Ecol., 11 (3), 155-165, http://dx.doi.org/10.1046/j.0962-1083.2001.01436.x

Baden S., Bostrom C., Tobiasson S., Arponen H., Moksnes P.O., 2010, Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystem: A broad-scale field experiment in the Baltic-Skagerrak area, Limnol. Oceanogr., 55 (3), 1435-1448, http://dx.doi.org/10.4319/lo.2010.55.3.1435

Baden S., Gullstrom M., Lunden B., Pihl L., Rosenberg R., 2003, Vanishing seagrass (Zostera marina, L.) in Swedish coastal waters, Ambio, 32(5), 374-377.

Brookfield J. F., 1996, A simple new method for estimating null allele frequency from heterozygote deficiency, Mol. Ecol., 5 (3), 453-455, http://dx.doi.org/10.1046/j.1365-294X.1996.00098.x

Busch K.E., Golden R. R., Parham T.A., Karrh L.P., Lewandowski M. J., Naylor M.D., 2010, Large-scale Zostera marina (eelgrass) restoration in Chesapeake Bay, Maryland, USA. part I: A comparison of techniques and associated costs, Restor. Ecol., 18 (4), 490-500, http://dx.doi.org/10.1111/j.1526-100X.2010.00690.x

CampanellaJ. J., Bologna P. A. X., Smalley J. V., AvilaD. N.,Lee K. N.,Areche E. C., SlavinL. J., 2012, Ananalysisofthepopulationgeneticsofrestored Zosteramarinaplantingsin BarnegatBay,New Jersey, Popul.Ecol.,55 (1), 121-133, http://dx.doi.org/10.1007/s10144-012-0351-4

Campanella J. J., Bologna P. A., Smalley J. V., Rosenzweig E. B., Smith S. M., 2010, Population structureofZosteramarina(eelgrass)ontheWestern Atlantic Coast is characterizedby poor connectivity and inbreeding,J. Hered., 101 (1), 61-70, http://dx.doi.org/10.1093/jhered/esp103

Cornuet J. M., LuikartG., 1996, Descriptionand power analysisof two testsfor detecting recentpopulationbottlenecksfromallele frequencydata,Genetics, 144 (4),2001-2014.

DiekmannO. E., Serrao E. A., 2012, Range-edgegeneticdiversity: Locallypoor extant southern patches maintain a regionally diverse hotspot in the seagrass Zosteramarina,Mol. Ecol.,21 (7),1647-1657, http://dx.doi.org/10.1111/j.1365-294X.2012.05500.x

Dorken M. E., Eckert C. G., 2001, Severely reduced sexual reproductionin northern populationsof aclonalplant,Decodonverticillatus (Lythraceae),J. Ecol., 89 (3),339-350, http://dx.doi.org/10.1046/j.1365-2745.2001.00558.x

EarlD. A., von HoldtB. M., 2012, STRUCTURE HARVESTER:Awebsite and programforvisualizing STRUCTURE outputandimplementing the Evanno method,Conserv. Genet.Resour.,4 (2),359-361, http://dx.doi.org/10.1007/s12686-011-9548-7

EvannoG., RegnautS.,Goudet J., 2005, Detectingthe numberof clustersof individuals using the software STRUCTURE: A simulationstudy, Mol. Ecol., 14 (8),2611-2620, http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x

ExcofferL., LavalG., Schneider S., 2005, Arlequin(version3.0):Anintegrated software packageforpopulation genetics dataanalysis, Evol. Bioinform. Online,1 (2),47-50.

Excoffer L., Smouse P. E., QuattroJ. M., 1992, Analysisofmolecularvariance inferred from metric distances among DNA haplotypes. Applicationto human mitochondrialDNArestriction data, Genetics, 131 (2),479-491.

Fonseca M. S., Kenworthy W. J.,Thayer G. W.,1998, Guidelines for the conservation andrestorationof seagrassesintheunitedstatesandadjacent waters,NOAACoastal OceanProgr.Decis.No.12, NOAACoastal Ocean Office, Silver Spring, 222 pp.

Frederiksen M.,Krause-JensenD.,HolmerM.,LaursenJ. S., 2004, Long-term changesinarea distribution ofeelgrass (Zosteramarina)inDanishcoastal waters, Aquat. Bot.,78 (2),167-181, http://dx.doi.org/10.1016/j.aquabot.2003.10.002

GoudetJ., 1995, FSTAT (version 1.2):Acomputer programtocalculateF-statistics, J. Hered., 86 (6),485-486.

Guo S. W.,Thompson E. A., 1992, Performingthe exacttestof Hardy-Weinberg proportionfor multiple alleles, Biometrics, 48 (2), 361-372, http://dx.doi.org/10.2307/2532296

HalkettF.,SimonJ. C.,BallouxF.,2005,Tacklingthepopulationgeneticsof clonal andpartiallyclonalorganisms,Trends Ecol.Evol.,20 (4),194-201, http://dx.doi.org/10.1016/j.tree.2005.01.001

HarwellM. C., Orth R. J., 2002,Long-distance dispersal potentialin ama- rine macrophyte,Ecology, 83 (12), 3319-3330, http://dx.doi.org/10.1890/0012-9658(2002)083[3319:LDDPIA]2.0.CO;2

HämmerliA.,ReuschT. B. H.,2003, Inbreedingdepressionin?uencesgenet size distribution ina marineangiosperm, Mol. Ecol., 12 (3),619-629, http://dx.doi.org/10.1046/j.1365-294X.2003.01766.x

Hizon-FradejasA. B., Nakano Y.,Nakai S.,Nishijima W., Okada M.,2009, Anchorage and resistance to uprooting forces of eelgrass (Zostera marina L.) shoots planted in slag substrate, JSWE, 7 (2), 91-101.

Jakobsson M., Rosenberg N. A., 2007, CLUMPP:A cluster matching and permutation program for dealing with label switching and multimodality in analysisofpopulationstructure, Bioinformatics,23 (14),1801-1806, http://dx.doi.org/10.1093/bioinformatics/btm233

Kalendar R.,Lee D.,SchulmanA. H.,2011, Javaweb toolsforPCR, insilico PCR, and oligonucleotide assembly and analysis,Genomics,98 (2),137-144, http://dx.doi.org/10.1016/j.ygeno.2011.04.009

KamelS. J.,HughesA. R.,GrosbergR. K.,StachowiczJ. J., 2012,Fine-scale genetic structure and relatednessinthe eelgrass Zosteramarina, Mar.Ecol. Prog. Ser., 447 (13), 127-137, http://dx.doi.org/10.3354/meps09447

Moksnes P. O.,GullstromM., KentarooT.,BadenS., 2008, Trophiccascadesin the temperate seagrass community, Oikos, 117 (5), 763-777, http://dx.doi.org/10.1111/j.0030-1299.2008.16521.x

Muniz-SalazarR., TalbotS. L., SageG. K., Ward D. H., Cabello-PasiniA., 2005,Populationgeneticstructureofannualandperennialpopulationsof Zostera marina L.alongthePacificcoast of Baja Californiaand the GulfofCalifornia,Mol. Ecol.,14 (3),711-722, http://dx.doi.org/10.1111/j.1365-294X.2005.02454.x

MunkesB.,2005, Eutrophication,phase shift,the delay and the potential return inthe GreifswalderBodden,BalticSea,Aquat.Sci.,67 (3),372-381, http://dx.doi.org/10.1007/s00027-005-0761-x

OlsenJ. L.,Stam W. T., CoyerJ. A.,ReuschT. B.,Billingham M.,Bostrom C., Wyllie-Echeverria S., 2004, North Atlanticphylogeography and large-scale population differentiation of the seagrass Zostera marina L., Mol. Ecol., 13 (7), 1923-1941, http://dx.doi.org/10.1111/j.1365-294X.2004.02205.x

Ort B. S., Cohen S., Boyer K. E., Wyllie-Eccheverria S., 2012, Population structure and genetic diversity among eelgrass (Zosteramarina) beds and depths in San FranciscoBay, J. Hered., 103 (4), 533-546, http://dx.doi.org/10.1093/jhered/ess022

Orth R. J.,Carruthers T. J. B., Dennison W. C., Duarte C. M., Fourqurean J. W.,HeckK. L.,HughesA. R.,WilliamsS. L.,2006,A global crisis for seagrass ecosystems,Bioscience, 56 (12), 987-996, http://dx.doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2

Peakall R., Smouse P. E., 2012, GenAlEx6.5: Genetic analysis in Excel. Population genetic software for teaching and research - an update, Bioinformatics, 28 (19), 2537-2539, http://dx.doi.org/10.1093/bioinformatics/bts460

Peterson B. J.,BrickerE.,BrisbinS. J.,Furman B. T., Stubler A. D.,Carroll J. M., WaycottM., 2013, Geneticdiversityand gene flow inZosteramarina populations surrounding Long Island, NewYork,USA: No evidence of inbreeding,genetic degradationor populationisolation,Aquat.Bot.,110 (10), 61-66, http://dx.doi.org/10.1016/j.aquabot.2013.05.003

Pritchard J. K., Stephens M., DonnellyP.,2000, Inferenceof populationstructure using multilocusgenotype data, Genetics,155 (2), 945-959.

Reusch T. B., 2000a, Five microsatelliteloci in eelgrass Zosteramarinaand a test of cross-speciesamplification inZ.noltiiandZ.japonica,Mol. Ecol.,9 (3), 371-373, http://dx.doi.org/10.1046/j.1365-294x.2000.00874-4.x

ReuschT. B., 2000b, Pollinationin the marinerealm:Microsatellitesreveal high outcrossing rates and multiplepaternityin eelgrass Zosteramarina,Heredity, 85 (5), 459-464, http://dx.doi.org/10.1046/j.1365-2540.2000.00783.x

ReuschT. B., 2002, Microsatellitesreveal high populationconnectivity in eelgrass (Zosteramarina)in two contrastingcoastal areas, Limnol. Oceanogr.,47 (1), 78-85, http://dx.doi.org/10.4319/lo.2002.47.1.0078

Reusch T. B., Stam W. T., Olsen J. L., 1999, Microsatelliteloci in eelgrass Zostera marina reveal marked polymorphismwithin and among populations, Mol. Ecol., 8 (2), 317-321, http://dx.doi.org/10.1046/j.1365-294X.1999.00531.x

ReynoldsL. K.,WaycottM.,McGlatheryK. J., OrthR. J.,ZiemanJ. C.,2012, Eelgrass restoration byseedmaintainsgeneticdiversity:Casestudyfrom a coastal bay system, Mar.Ecol. Prog.Ser.,448 (2),223-233, http://dx.doi.org/10.3354/meps09386

Rosenberg N. A., 2004,DISTRUCT:A program forthegraphicaldisplayof population structure,Mol. Ecol. Notes,4 (1),137-138, http://dx.doi.org/10.1046/j.1471-8286.2003.00566.x

RoussetF.,2008,Genepop’007: Acompletere-implementationoftheGenepop softwarefor WindowsandLinux,Mol. Ecol.Resour.,8 (1),103-106, http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x

Salm R. V., ClarkJ.,Siirila E., 2000, Marineand coastal protectedareas:a guide for plannersand managers,IUCN, Washington DC, 371 pp.

SambrookJ.,Russell D. W., 2006, Purification of nucleicacids by extractionwith phenol:chloroform,CSH Protoc., http://dx.doi.org/10.1101/pdb.prot4455

Short F. T.,PolidoroB., LivingstoneS. R., Carpenter K. E., BandeiraS., Bujang J. S., Zieman J. C.,2011, Extinction riskassessmentof theworld’s seagrass species, Biol. Conserv.,144 (7), 1961-1971.

Tanner C., Hunter S., Reel J.,Parham T.,Naylor M., KarrhL., Schenk E., 2010, Evaluatinga large-scaleeelgrassrestoration projectintheChesapeakeBay, Restor.Ecol.,18 (4),538-548, http://dx.doi.org/10.1111/j.1526-100X.2010.00694.x

van Katwijk M. M., Bos A. R., de Jonge V. N., Hanssen L. S., Hermus D. C., de Jong D. J., 2009, Guidelinesfor seagrass restoration:Importance of habitat selection and donorpopulation, spreading ofrisks,and ecosystemengineeringeffects, Mar.Pollut. Bull.,58 (2),179-188, http://dx.doi.org/10.1016/j.marpolbul.2008.09.028

VanOosterhout C.,WilliamF.,HutchinsonD. P.,WillsM.,ShipleyP.,2004, Micro- checker: Softwareforidentifyingandcorrectinggenotyping errors in microsatellite data, Mol. Ecol. Notes, 4 (3), 535-538, http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x

Waycott M., DuarteC. M., Carruthers T. J., OrthR. J., Dennison W. C., Olyarnik S.,Williams S. L.,2009,Accelerating lossofseagrassesacross theglobe threatens coastal ecosystems, P. Natl.Acad. Sci. USA, 106 (30), 12377-12381, http://dx.doi.org/10.1073/pnas.0905620106

Węsławski J. M., Kryla-Straszewska L., Piwowarczyk J., UrbańskiJ., WarzochaJ., Kotwicki L., Wiktor J., 2013, Habitat modelling limitations - Puck Bay, Baltic Sea - a case study, Oceanologia, 55 (1),167-183, http://dx.doi.org/10.5697/oc.55-1.167

WęsławskiJ. M.,Warzocha J., Wiktor J., UrbańskiJ.,Bradtke K.,KrylaL., Piwowarczyk J., 2009, Biological valorisation of the southern Baltic Sea (Polish exclusive economiczone), Oceanologia, 51 (3), 415-435, http://dx.doi.org/10.5697/oc.51-3.415

full, complete article (PDF - compatibile with Acrobat 4.0), 181 KB


Importance of bacteria and protozooplankton for faecal pellet degradation
Oceanologia 2014, 56(3), 565-581
http://dx.doi.org/10.5697/oc.56-3.565

Nathalie Morata1,2,*, Lena Seuthe1
1Department of Arctic and Marine Biology, University of Tromsø,
N-9037 Tromsø, Norway
2Lemar CNRS UMR 6539,
Rue Dumont D'Urville, 29280 Plouzané, France;
e-mail: nathalie.morata@gmail.com
*corresponding author

keywords: Carbon demand, carbon flux, respiration, faecal pellet, Calanus

Received 12 August 2013, revised 03 February 2014, accepted 04 February 2014.

This work is a contribution to the Arctos Network and Conflux project.

Abstract

The degradation mechanisms of faecal pellets are still poorly understood, although they determine their contribution to vertical fluxes of carbon. The aim of this study was to attempt to understand the microbial (bacteria and protozooplankton) degradation of faecal pellets by measuring the faecal pellet carbon-specific degradation rate (FP-CSD) as an indicator of pellet degradation. "In situ" and "culture" pellets (provided by the grazing of copepods in in situ water and in a culture of Rhodomonas sp. respectively) were incubated in seawater from the chlorophyll a maximum and 90 m depth, and in filtered seawater. When microbes were abundant (at the chlorophyll a maximum), they significantly increased FP-CSD. In addition, culture pellets had a higher FP-CSD than in situ pellets, suggesting that the results obtained with culture pellets should be treated with caution when trying to extrapolate to natural field conditions.

  References ref

ArrigoK.,vanDijkenG.,PabiS., 2008, Impactof a shrinkingArcticicecover onmarineprimaryproduction,Geophys.Res.Lett., 35 (19),L19603, http://dx.doi.org/10.1029/2008GL035028

Błachowiak-Samołyk K., Soreide J. E., Kwaśniewski S., Sundfjord A., Hop H., Falk- PetersenS., HegsethE. N.,2008, Hydrodynamic controlof mesozooplankton abundanceandbiomassin northernSvalbardwaters,Deep-SeaRes.Pt.II, 55 (20-21), 2210-2224, http://dx.doi.org/10.1016/j.dsr2.2008.05.018

BromsC.,Melle W.,Kaartvedt S.,2009, Oceanicdistribution andlifecycleof Calanus speciesintheNorwegianSeaandadjacentwaters,Deep-SeaRes. Pt. II, 56, 1910-1921, http://dx.doi.org/10.1016/j.dsr2.2008.11.005

Calbert A., LandryM. R., 2004, Phytoplankton growth, microzooplankton grazing, andcarbon cyclinginmarine systems, Limnol.Oceanogr., 49 (1), 51-67, http://dx.doi.org/10.4319/lo.2004.49.1.0051

CarrollM. L., CarrollJ.,2003, TheArcticSeas,[in:]Biogeochemistryof marine systems, K. D. Black & G. B. Shimmield (eds.),Blackwell Publ.,Oxford, 126-156.

CheckleyD. M. J.,Entzeroth L. C.,1985, Elementaland isotopicfractionationof carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle, J. Plankton Res., 7 (4), 533-568, http://dx.doi.org/10.1093/plankt/7.4.553

CimblerisA. C. P.,KalfJ.,1998, Planktonicbacterial respirationasafunction ofC:N:P ratiosacrosstemperatelakes,Hydrobiologia, 384 (1-3),89-100, http://dx.doi.org/10.1023/A:1003496815969

Conover R., 1988, Comparativelife histories in the genera Calanus and Neocalanus in high latitudes of the Northern Hemisphere, Hydrobiologia,167-168 (1), 127-142, http://dx.doi.org/10.1007/BF00026299

DaggM. J., Walser W. E. J.,1986,The effectoffoodconcentration onfecal pellet sizeinmarinecopepods,Limnol.Oceanogr.,31 (5),1066-1071, http://dx.doi.org/10.4319/lo.1986.31.5.1066

DalyK. L.,1997,Fluxofparticulatematterthrough copepodsintheNortheast Water Polynya, J. Marine Syst., 10 (1-4), 319-342, http://dx.doi.org/10.1016/S0924-7963(96)00062-0

Froneman P. W., PerissinottoR., 1996,Microzooplanktongrazingand protozooplanktoncommunity structure in theSouth Atlantic andin the Atlantic sectorof the SouthernOcean,Deep-SeaRes. Pt. I, 43 (5),703-721, http://dx.doi.org/10.1016/0967-0637(96)00010-6

Fukami K., Simidu U., Taga N., 1981,Fluctuation of thecommunities of heterotrophicbacteriaduringthedecomposition process ofphytoplankton, J. Exp. Mar. Biol.Ecol., 55 (2-3), 171-184, http://dx.doi.org/10.1016/0022-0981(81)90110-6

GowingM. M.,SilverM. V.,1983,Origins andmicroenvironment ofbacteria mediating fecalpellet decompositioninthe sea, Mar.Biol.,73, 15-23, http://dx.doi.org/10.1007/BF00396280

Halvorsen E., Tande K. S., Edvardsen A., Slagstad D., Pedersen O. P., 2003, Habitat selection of overwintering Calanus finmarchicus in the NENorwegian Sea and shelf waters off Northern Norway in 2000-02, Fish. Oceanogr.,12 (4-5), 339-351, http://dx.doi.org/10.1046/j.1365-2419.2003.00255.x

HansenB., Bech G.,1996, Bacteriaassociatedwith a marineplanktonic copepod inculture. 1.Bacterialgenera inseawater, body surface,intestinesand fecal pellets and succession during fecal pellet degradation, J. Plankton Res., 18 (2), 257-273, http://dx.doi.org/10.1093/plankt/18.2.257

HansenB., FotelF. L., Jensen N. J., MadsenS. D., 1996, Bacteriaassociated with a marine planktonic copepod in culture. 2. Degradation of fecal pellets produced on a diatom,a nanoflagellate or a dinoflagellate diet, J. Plankton Res., 18 (2), 275-288, http://dx.doi.org/10.1093/plankt/18.2.275

HansenA. S., Nielsen T. G.,LevinsenH., MadsenS. D., Thingstad T. F.,Hansen B. W., 2003, Impact of changing ice cover on pelagic productivity and food web structurein Disko Bay, WestGreenland:a dynamicmodel approach, Deep-Sea Res. Pt. I, 50 (2), 171-187, http://dx.doi.org/10.1016/S0967-0637(02)00133-4

Hirche H. J.,Mumm N., 1992, Distributionof Dominant Copepods in the Nansen Basin,Arctic-Ocean, in Summer, Deep-Sea Res. Pt. I, 39 (2 Pt. 1), S485-S505, http://dx.doi.org/10.1016/S0198-0149(06)80017-8

HircheH. J., 1991,Distribution ofdominant calanoidcopepodspeciesinthe GreenlandSea duringlate fall, PolarBiol., 11 (6),11-17, http://dx.doi.org/10.1007/BF00239687

Honjo S., Roman M. R.,1978, Marine copepod fecal pellets: production, preservationand sedimentation, J. Marine Syst., 36, 45-57.

IversenM. H.,PoulsenL. K.,2007,Coprorhexy, coprophagy,andcoprochalyin the copepodsCalanushelgolandicus,Pseudocalanus elongatus,andOithona similis,Mar. Ecol.-Prog.Ser.,350,79-89, http://dx.doi.org/10.3354/meps07095

JacobsenT. R.,Azam F.,1984, Role of bacteria in copepod fecal pellet decomposition: colonization,growth rates and mineralization, Bull. Mar. Sci., 35, 495-502.

LalandeC.,Bauerfeind E.,NöthigE. M.,2011,Downwardparticulate organic carbon export at high temporal resolutionin the eastern Fram Strait:influence of Atlantic Wateron flux composition, Mar. Ecol.-Prog. Ser., 440, 127-136, http://dx.doi.org/10.3354/meps09385

LampittR. S.,No jiT.,vonBodungenB.,1990,Whathappenstozooplankton faecal pellets? Implications formaterialflux,Mar.Biol.,104, 15-23, http://dx.doi.org/10.1007/BF01313152

Lane P. V. Z., Smith S. L., Biscay P. E., 1994, Carbon flux and recycling associated with zooplanktonfecal pellets on the shell of the MiddleAtlanticBight,Deep Sea Res. Pt. II, 41,437-457, http://dx.doi.org/10.1016/0967-0645(94)90031-0

LevinsenH.,Turner J. T.,NielsenT. G.,HansenB. W.,2000,Onthetrophic coupling between protists and copepods in arctic marine ecosystems,Mar. Ecol.- Prog. Ser., 204, 65-77, http://dx.doi.org/10.3354/meps204065

MadsenS.,NielsenT., HansenB.,2001,Annual populationdevelopment and production by Calanusfinmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland, Mar. Biol., 139, 75-93, http://dx.doi.org/10.1007/s002270100552

MüllerE. F., Thor P., NielsenT. G., 2003,Production ofDOCbyCalanus finmarchicus,C.glacialisandC.hyperboreusthroughsloppyfeedingand leakage from fecal pellets, Mar. Ecol.-Prog.Ser., 262, 185-191, http://dx.doi.org/10.3354/meps262185

No ji T. T.,1991, Theinfluenceof macrozooplankton onverticalparticulateflux, Sarsia, 76,1-9.

No ji T. T.,ReyF.,MillerL. A.,BorsheimK. Y.,Urban-Rich J.,1999, Fateof biogenic carbonintheupper200 mof thecentralGreenlandSea,Deep-Sea Res. Pt. II, 46, 1497-1509, http://dx.doi.org/10.1016/S0967-0645(99)00032-6

OlliK., WassmannP., ReigstadM., RatkovaT. N., ArashkevichE.,Pasternak A., MatraP. A., KnulstJ., TranvikL., KlaisR., JacobsenA., 2007, The fate of production in the central ArcticOcean - top-down regulation by zooplankton expatriates?,Prog.Oceanogr.,72, 84-113, http://dx.doi.org/10.1016/j.pocean.2006.08.002

Olli K., Wexels Riser C., Wassmann P., Ratkova T., Arashkevich E., Pasternak A., 2002, Seasonalvariationinverticalfluxofbiogenicmatter inthe marginal icezoneand thecentralBarentsSea,J. MarineSyst.,38,189-204, http://dx.doi.org/10.1016/S0924-7963(02)00177-X

Olsen S. N., WesthP., Hansen B. W., 2005, Real-timequantification of microbial degradation of copepod fecal pellets monitored by isothermal microcalorimetry, Aquat. Microb. Ecol., 40, 259-267, http://dx.doi.org/10.3354/ame040259

PaffenhöferG.-A., Knowles S. C., 1979, Ecologicalimplicationsof fecal pellet size, production and consumptionby copepods,J. Marine Syst., 37, 35-49.

PetersenG. H., Curtis M. A., 1980, Differences inenergyflowthroughmajor components ofsubarctic, temperateandtropicalmarine shelfecosystems, Dana, 1, 53-64.

PilskalnC. H., Honjo S., 1987, Thefecal pellet fractionof biogeochemical particle fluxesto the deep-sea,Glob. Biogeoch.Cy., 1,31-48, http://dx.doi.org/10.1029/GB001i001p00031

PlougH.,Iversen M. H.,KoskiM., BuitenhuisE. T., 2008, Production,oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite, Limnol. Oceanogr., 53 (2), 469-476, http://dx.doi.org/10.4319/lo.2008.53.2.0469

Porter K. G., Feig Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora, Limnol.Oceanogr., 25 (5),943-948, http://dx.doi.org/10.4319/lo.1980.25.5.0943

Poulsen L. K., Iversen M. H., 2008, Degradationof copepod fecal pellets:key role of protozooplankton,Mar.Ecol.-Progr.Ser.,367, 1-13, http://dx.doi.org/10.3354/meps07611

Poulsen L. K., Kiorboe T., 2006, Verticalfluxanddegradation ratesofcopepod fecal pellets ina zooplankton communitydominatedby small copepods,Mar. Ecol.-Prog. Ser., 323, 195-204, http://dx.doi.org/10.3354/meps323195

ReigstadM.,Wexels-RiserC., Svensen C., 2005, Fateofcopepodfaecalpellets andthe roleofOithona spp.,Mar. Ecol.-Prog.Ser., 304,265-270, http://dx.doi.org/10.3354/meps304265

RenaudP. E., RiedelA., MichelC., MorataN., Gosselin M., Juul-PedersenT., Chiuchiolo A., 2007, Seasonal variation in benthic community oxygen demand: A responsetoanicealgal bloom intheBeaufortSea, Canadian Arctic?, J. Marine Syst., 67 (1-2),1-12, http://dx.doi.org/10.1016/j.jmarsys.2006.07.006

Rivkin R. B., Legendre L., 2001, Biogeniccarbon cycling in the upper ocean:effects of microbial respiration, Science, 291 (5512), 2398-2400, http://dx.doi.org/10.1126/science.291.5512.2398

Roy S., PouletS. A., 1990, Laboratory study of the chemical compositionof aging copepod fecal material, J. Exp. Biol. Ecol., 135 (1), 3-18, http://dx.doi.org/10.1016/0022-0981(90)90195-I

Seuthe L., Rokkan Iversen K., Narcy F., 2011, Microbial processes in a high-latitude fjord (Kongsfjorden,Svalbard): II. Ciliates anddinoflagellates, PolarBiol., 34 (5), 751-766, http://dx.doi.org/10.1007/s00300-010-0930-9

ShinadaA., IkedaT.,TsudaA., 2001, Seasonalvariationand spatial distribution of phyto- and protozooplankton inthe central BarentsSea, J. Plankton Res., 23 (11), 1237-1247, http://dx.doi.org/10.1093/plankt/23.11.1237

Shek L., Liu H., 2010, Oxygenconsumptionrates of fecal pellets produced by three coastal copepodspeciesfedwithadiatomThalassiosira pseudonana,Mar. Pollut.Bull.,60 (7),1005-1009, http://dx.doi.org/10.1016/j.marpolbul.2010.02.001

Sherr E. B., Sherr B. F., WheelerP. A., ThompsonK., 2003, Temporaland spatial variationin stocksofautotrophicandheterotrophicmicrobesintheupper water column of the central ArcticOcean, Deep-Sea Res. Pt. I, 50 (5), 557-571, http://dx.doi.org/10.1016/S0967-0637(03)00031-1

Slagstad D.,Tande K. S.,1990,Growthandproductiondynamics ofCalanus glacialis in an arctic pelagic food web, Mar. Ecol.-Prog.Ser., 63, 189-199, http://dx.doi.org/10.3354/meps063189

Small L. F.,LandryM. R.,EppleyR. W.,AzamF.,CarlucciA. F.,1989, Roleof plankton in the carbon and nitrogen budgets of Santa Monica Basin, California, Mar. Ecol.-Prog. Ser., 56,57-74, http://dx.doi.org/10.3354/meps056057

SoreideJ. E.,Falk-PetersenS.,HegsethE. N.,HopH.,CarrollM. L.,Hobson K. A., Błachowiak-Samołyk K., 2008, Seasonal feeding strategies of Calanus in the high-ArcticSvalbard region, Deep Sea Res. Pt. II, 55 (20-21), 2225-2244, http://dx.doi.org/10.1016/j.dsr2.2008.05.024

Svensen C., Wexels Riser C., ReigstadM., Seuthe L., 2012, Degradation of copepod faecal pellets: role of microbial community and Calanus finmarchichus, Mar. Ecol.-Prog.Ser., 462, 39-49, http://dx.doi.org/10.3354/meps09808

SwiftJ. H.,Aagaard K.,1981,Seasonaltransitionsandwater massformation in the Iceland and Greenland Sea, Deep-Sea Res. Pt. I, 28, 1107-1129, http://dx.doi.org/10.1016/0198-0149(81)90050-9

Tang K., 2005,Copepods asmicrobialhotspotsintheocean:effectsofhost feeding activities on attached bacteria, Aquat.Microbiol. Ecol., 38, 31-40, http://dx.doi.org/10.3354/ame038031

TangK., Dzillas C., Hutalle-Schmelzer K., Grossart H. P., 2009, Effectsof food on bacterial communitycompositionassociatedwith thecopepodAcartiatonsa Dana,Biol.Letters,5, 549-553, http://dx.doi.org/10.1098/rsbl.2009.0076

Takahashi K., Nagao N., TaguchiS., 2002, Respirationof adult female Calanus hyperboreus (Copepoda) duringspringintheNorthWaterPolynya, Polar Biosci., 15, 45-51. Thor P., DamH.,RogersD. R., 2003,Fate oforganiccarbonreleasedfrom decomposingcopepodfecalpelletsin relation tobacterialproduction and ectoenzymaticactivity,Aquat.Microb.Ecol.,33 (3),279-288, http://dx.doi.org/10.3354/ame033279

Turner J. T.,1979, Microbialattachment to copepod faecal pellets and its possible significance, T. Am. Microsc. Soc., 98 (1), 131-135, http://dx.doi.org/10.2307/3225949

Turner J. T.,2002,Zooplanktonfecal pellets, marinesnow and sinking phytoplankton blooms, Aquat.Microb.Ecol.,27, 57-102, http://dx.doi.org/10.3354/ame027057

Urban-Rich J., 1999, Releaseof dissolved organic carbon from copepod fecal pellets in the GreenlandSea, J. Exp. Biol. Ecol., 232, 107-124, http://dx.doi.org/10.1016/S0022-0981(98)00104-X

Urban-Rich J.,NordbyE.,Andreassen I. J.,Wassmann P.,1999,Contribution by mesozooplankton fecal pellets to the carbon flux on Nordvestbanken, north Norwegian shelf in 1994, Sarsia, 84, 253-264.

Urban J. L., Deibel D., SchwinghamerP., 1993, Seasonal variations in the densities of fecal pellets produced by Oikopleura vanhoeffeni (C. Larvacea)and Calanus finmarchicus(C. Copepoda), Mar.Biol., 117, 607-613, http://dx.doi.org/10.1007/BF00349772

UrrèreM. A.,Knauer G. A.,1981,Zooplanktonfecalpelletfluxesandvertical transport ofparticulate organic material inthe pelagic environment, J. PlanktonRes.,3, 369-387, http://dx.doi.org/10.1093/plankt/3.3.369

von BodungenB.,AntiaA.,BauerfeindE.,HauptO.,Koeve W.,MachadoE., Peeken I., Peinert R., ReitmeierS., ThomsenC., Voss M., WunschM., Zeller U., Zeitzschel B., 1995, Pelagic processes and vertical flux of particles:an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea,Geol.Rundsch., 84 (1),11-27, http://dx.doi.org/10.1007/BF00192239

vonBodungen B.,Fischer G., NöthigE. M.,WeferG., 1987,Sedimentation ofkrill faeces duringspring developmentof phytoplanktonin Bransfield Strait,Antarctica, Mitt. Geol. Palaönt. Inst.Univ. Hamburg,SCOPE/UNEP Sonderbd.,62, 243-257.

Wassmann P., ReigstadM., Haug T., Rudels B., Carroll M. L., Hop H., Gabrielsen G. W., Falk-Petersen S., Denisenko S. G., Arashkevich E., Slagstad D., Pavlova O., 2006, Foodwebs and carbon flux in the BarentsSea, Prog. Oceanogr.,71, 232-287, http://dx.doi.org/10.1016/j.pocean.2006.10.003

Wassmann P., Hansen L., AndreassenI., Wexels Riser C., Urban-Rich J., 1999, Distribution and sedimentation of faecal pellets on the Nordvestbanken shelf, northern Norway,in 1994, Sarsia, 84, 239-252.

WexelsRiserC., WassmannP., Reigstad M.,SeutheL.,2008,Vertical flux regulation by zooplankton inthe northernBarentsSeaduring Arcticspring, Deep-SeaRes.Pt. II,55,2320-2329, http://dx.doi.org/10.1016/j.dsr2.2008.05.006

WiebeP. H., MadinL. P.,HauryL. R.,HarbisonG. R.,PhilbinL. M., 1979, Diel vertical migration by Salpa aspera and its potential for large-scale particulate organicmatter transport tothedeep-sea, Mar.Biol.,53,249-255, http://dx.doi.org/10.1007/BF00952433

Yang E. J., Ju S. J., Choi J. K., 2010, Feeding strategy of the copepod Acartiahongi on phytoplanktonand micro-zooplankton in Gyeonggi Bay, Yellow Sea, Estuar. Coast.ShelfSci.,88 (2),292-301, http://dx.doi.org/10.1016/j.ecss.2010.04.005

ZhangJ., RothrockD. A.,SteeleM.,1998,WarmingoftheArctic Oceanby a strengthenedAtlantic inflow: Modelresults,Geophys.Res.Lett.,25 (10), 1745-1748, http://dx.doi.org/10.1029/98GL01299

full, complete article (PDF - compatibile with Acrobat 4.0), 172 KB


Short-term variation in zooplankton community from Daya Bay with outbreaks of Penilia avirostris
Oceanologia 2014, 56(3), 583-602
http://dx.doi.org/10.5697/oc.56-3.583

Kaizhi Li1, Jianqiang Yin1, Yehui Tan1, Liangmin Huang1, Xingyu Song1,2,3,*
1Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou 510301, China
2Marine Biology Research Station at Daya Bay,
Shenzhen 518121, China
3South China Sea Institute of Oceanology, Chinese Academy of Sciences,
164 West Xingang Road, Guangzhou, Guangdong 510301, China;
e-mail: songxy@scsio.ac.cn
*corresponding author

keywords: Zooplankton, Penilia avirostris, nuclear power station, aquaculture, Daya Bay, Dapeng Cove

Received 11 April 2013, revised 10 February 2014, accepted 19 March 2014.

This research was supported by the Knowledge Innovation Program of the ChineseAcademy of Sciences (SQ201307), the Public Science and Technology Research Funds Projects of Ocean (No. 201305030) and the National Natural Science Foundation of China (No. 41276159, 31101619, 41130855 and 41276161).

Abstract

The zooplankton community structure in bays fluctuates as a result of anthropogenic activities in such waters. We focused on the short-term variability of a zooplankton community and compared its differences at the outflow of a nuclear power plant (ONPP), in a marine cage-culture area (MCCA) and in unpolluted waters (UW) in the south-west part of Daya Bay from 28 April to 1 June 2001. Environmental factors and zooplankton abundance differed significantly among stations at ONPP, MCCA and UW: high temperatures and a high zooplankton abundance occurred at ONPP, while a high chlorophyll a concentration and a low zooplankton abundance prevailed in MCCA. Statistical analysis revealed that the zooplankton diversity and abundance could be reduced by the activity of the marine cage-culture in a short time. Penilia avirostris made up an important component of the zooplankton in the study area, its abundance ranging widely from 16 to 7267 indiv. m-3 from April to June and peaking at the ONPP outflow. The outbreak of P. avirostris probably resulted from the combined effects of favourable water temperature, food concentration and its parthenogenetic behaviour.

  References ref

AtienzaD.,Saiz E.,CalbetA.,2006, Feedingecologyofthemarinecladoceran Penilia avirostris: natural diet,prey selectivityand daily ration, Mar.Ecol.- Prog. Ser., 315, 211-220, http://dx.doi.org/10.3354/meps315211

Cai B. J., 1990, Abundance of Cladocerain Daya Bay, [in:] Collectionsof papers on marine ecology in the DayaBay, ThirdInst.Oceanogr.StateOcean.Admin. (eds.),Ocean Press, Beijing, 369-373, (in Chinese with English abstract).

Chang K. H.,Amano A.,MillerT. W., IsobeT., Maneja R., Siringan F. P., Imai H.,NakanoS.,2009,PollutionstudyinManilaBay:eutrophication and its impact on plankton community, [in:]Interdisciplinarystudies onenvironmental chemistry-environmental researchinAsia, Y.Obayashi, T. Isobe, A. Subramanian, S. Suzuki & S. Tanabe (eds.),TERRAPUB., 261-267.

Chen Q. C., Zhang S. Z., 1965, Theplanktonic copepods of the YellowSea and the EastChinaSea I, Calanoida,Stud. Mar. Sinica, 7, 20-131, (in Chinese).

Clarke K. R., Gorley R. N., 2006, PRIMER v6. User Manual/Tutorial, PRIMER-E, Plymouth. CornelG. E., WhoriskeyF. G.,1993, Theeffectsof rainbow trout (Oncorhynchus mykiss) cage culture on the water quality,zooplankton,benthos and sediments of Lacdu Passage,Quebec, Aquaculture, 109 (2), 101-117, http://dx.doi.org/10.1016/0044-8486(93)90208-G

GoreM. A.,1980,FeedingexperimentsonPenilia avirostrisDana(Cladocera: Crustacea), J. Exp.Mar.Biol. Ecol.,44 (2),263-260, http://dx.doi.org/10.1016/0022-0981(80)90156-2

Grahame J., 1976, Zooplanktonof a tropical harbour:the numbers,composition, and response to physical factors of zooplankton in Kingston Harbour, Jamaica,J. Exp. Mar. Biol. Ecol., 25 (3), 219-237, http://dx.doi.org/10.1016/0022-0981(76)90125-8

HuangH., Lin Q., WangW.,Jia X., 2005, Impactof cage fish farming on water environmentin DayaBay,SouthChinaFish.Sci., 1 (3),9-17, (in Chinese).

JohnsD. G.,EdwardsM., GreveW.,John A. W. G.,2005, Increasingprevalence of the marine cladoceran Penilia avirostris (Dana,1852)in theNorth Sea, Helgoland Mar. Res., 59 (3),214-218, http://dx.doi.org/10.1007/s10152-005-0221-y

Katechakis A., Stibor H., 2004, Feeding selectivities of the marine cladocerans Penilia avirostris, Podon intermedius and Evadne nordmanni, Mar. Biol., 145 (3), 529-539, http://dx.doi.org/10.1007/s00227-004-1347-1

Kim S.W., Onbé T., Yoon Y.H., 1989, Feeding habits of marine cladocerans in the Inland Sea of Japan, Mar. Biol., 100 (3), 313-318, http://dx.doi.org/10.1007/ BF00391145

Li T., Liu S., Huang L.M., Huang H., Lian J. S., Yan Y., Lin S. J., 2011, Diatom to dinoflagellate shift in the summer phytoplankton community in a bay impacted by nuclear power plant thermal effluent, Mar. Ecol.-Prog. Ser., 424, 75-85, http://dx.doi.org/10.3354/meps08974

Li K. Z., Yin J. Q., Huang L.M., Song X.Y., 2012, Comparison of siphonophore distributions during the southwest and northeast monsoons on the northwest continental shelf of the South China Sea, J. Plankton Res., 34 (7), 636-641, http://dx.doi.org/10.1093/plankt/fbs035

Lian G. S., Cai B. J., Lin Y.H., Lin M., Dai Y.Y., Lin J.H., 1990, Distribution of biomass and density of zooplankton in Daya Bay, [in:] Collections on papers on marine ecology in the Daya Bay, Beijing, Third Inst. Oceanogr. State Ocean. Admin. (eds.), Ocean Press, 221-231, (in Chinese).

Lipej L., Mozetic P., Turk V., Malej A., 1997, The trophic role of the marine cladoceran Penilia avirostris in the Gulf of Trieste, Hydrobiologia, 360 (1-3), 197-203, http://dx.doi.org/10.1023/A:1003180030116

Marazzo A., Valentin J.L., 2001, Spatial and temporal variations of Penilia avirostris and Evadne tergestina (Crustacea, Branchiopoda) in a tropical Bay, Brazil, Hydrobiologia, 445 (1-3), 133-139, http://dx.doi.org/10.1023/A:1017592323388

Marazzo A., Valentin J. L., 2004, Reproductive aspects of marine cladocerans Penilia avirostris and Pseudevadne tergestina (Crustacea, Branchiopoda) in the outer part of Guanabara Bay, Brazil, Brazil J. Biol., 64 (3A), 543-549.

Miyashita L.K., Pompeu M., Gaeta S.A., Lopes R.M., 2010, Seasonal contrasts in abundance and reproductive parameters of Penilia avirostris (Cladocera, Ctenopoda) in a coastal subtropical area, Mar. Biol., 157 (11), 2511-2519, http://dx.doi.org/10.1007/s00227-010-1515-4

Oviatt C., Lane P., French III F., Donaghay P., 1989, Phytoplankton species and abundance in response to eutrophication in coastal marine mesocosms, J. Plankton Res., 11 (6), 1223-1244, http://dx.doi.org/10.1093/plankt/11.6.1223

Park G. S., Marshall H.G., 2000, Estuarine relationships between zooplankton community structure and trophic gradients, J. Plankton Res., 22 (1), 121-135, http://dx.doi.org/10.1093/plankt/22.1.121

Parsons T.R., Maita Y., Lalli C.M., 1984, A manual of chemical and biological methods for seawater analyses, Pergamon Press, Oxford, 173 pp.

Rose K., Roff J.C., Horcroft R.R., 2004, Production of Penilia avirostris in Kingston Harbour, Jamaica, J. Plankton Res., 26 (6), 605-615, http://dx.doi.org/10.1093/plankt/fbh059

Shen S.P., Chen X.M., Li C.P., Yin J.Q., 1999, Distribution of zooplankton in the southwest waters of Daya Bay, [in:] Research on marine system of Daya Bay, Beijing, Mar. Biol. Res. Station, South China Sea Inst. Oceanol. Chinese Acad. Sci. (eds.), China Meteor. Press, 73-95, (in Chinese).

Song X. Y., Huang L. M., Zhang J. L., Huang X.P., Zhang J. B., Yin J.Q., Tan Y.H., Liu S., 2004, Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer, Mar. Pollut. Bull., 49 (11-12), 1036-1044, http://dx.doi.org/10.1016/j.marpolbul.2004.07.008

Spatharis S., Tsirtsis G., Danielidis D. B., Chi T.D., Mouillo D., 2007, Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area, Estuar. Coast. Shelf Sci., 73 (3-4), 807-815, http://dx.doi.org/10.1016/j.ecss.2007.03.016

Tang D. L., Kester D.R., Wang Z., Lian J., Kawamura H., 2003, AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China, Remote Sens. Environ., 84 (4), 506-515, http://dx.doi.org/10.1016/S0034-4257(02)00149-9

Tseng L.C., Dahms H.U., Hung J. J., Chen Q.C., Hwang J. S., 2011, Can different mesh sizes affect the results of copepod community studies?, J. Exp. Mar. Biol. Ecol., 398 (1-2), 47-55, http://dx.doi.org/10.1016/j.jembe.2010.12.007

Uye S., 1994, Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence, Hydrobiologia, 292-293(1), 513-519, http://dx.doi.org/10.1007/BF00229979

Uye S., Nagano N., Shimazu T., 1998, Biomass, production and trophic roles of micro- and net-zooplankton in Dokai inlet, a heavily eutrophic inlet, in summer, Plankton Biol. Ecol., 45 (2), 171-182.

Wang Y. S., Lou Z.P., Sun C.C., Song S., 2008, Ecological environmental changes in Daya Bay, from 1982 to 2004, Mar. Pollut. Bull., 56 (11), 1871-1879, http://dx.doi.org/10.1016/j.marpolbul.2008.07.017

Wang Y. S., Lou Z.P., Sun C. C., Wang H. L., Mitchell B. G., Wu M. L., Deng C., 2012, Identification of water quality and zooplankton characteristics in Daya Bay, China, from 2001 to 2004, Environ. Earth Sci., 66, 655-671, http://dx.doi.org/10.1007/s12665-011-1274-7

Wang Y. S., Lou Z.P., Sun C.C., Wu M. L., Han S.H., 2006, Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002, Oceanologia, 48 (2), 193-211.

Wang W., Lu M., Huang S., 1996, Analysis on relationships between total generation rate of oxygen and biological environment in Daya Bay, Acta Oceanol. Sinica, 18 (2), 57-65.

Wang Z.H., Zhao J.G., Zhang Y. J., Yu C., 2009, Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea, J. Environ. Sci., 21 (9), 1268-1275, http://dx.doi.org/10.1016/S1001-0742(08)62414-6

Wong C. K., Chan A. L.C., Tang K.W., 1992, Natural ingestion rates and grazing impact of the marine cladoceran Penilia avirostris Dana in Tolo Harbour, Hong Kong, J. Plankton Res., 14 (12), 1757-1765, http://dx.doi.org/10.1093/plankt/14.12.1757

Wu M. L., Wang Y. S., 2007, Using chemometrics to evaluate anthropogenic effects in Daya Bay, China, Estuar. Coast. Shelf Sci., 72 (4), 732-742, http://dx.doi.org/10.1016/j.ecss.2006.11.032

Wu M.L., Wang Y.S., Sun C.C., Wang H.L., Dong J.D., Yin J.P., Han S.H., 2010, Identification of coastal water quality by statistical analysis methods in Daya Bay, South China Sea, Mar. Pollut. Bull., 60 (6), 852-860, http://dx.doi.org/10.1016/j.marpolbul.2010.01.007

Xu G. Z., 1989, Environments and resources of Daya Bay, Anhui Sci. Tech. Publ., HeFei, (in Chinese).

Xu Z. L., Chen Y.Q., 1989, Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea, J. Ecol., 8, 13-15, (in Chinese).

Yin J.Q., Huang L.M., Li K. Z., Lian S.M., Li C. L., Lin Q., 2011, Abundance distribution and seasonal variations of Calanus sinicus (Copepoda: Calanoida) in the northwest continental shelf of South China Sea, Cont. Shelf Res., 31 (14), 1447-1456, http://dx.doi.org/10.1016/j.csr.2011.06.010

Zaitsev Y.P., 1992, Recent changes in the trophic structure of the Black Sea, Fish. Oceanogr., 1 (2), 180-189, http://dx.doi.org/10.1111/j.1365-2419.1992.tb00036.x

Zheng Z., Li S. J., Xu Z. Z., 1984, Marine planktology, China Ocean Press, Beijing, (in Chinese).

full, complete article (PDF - compatibile with Acrobat 4.0), 225 KB


Benthic non-indigenous species among indigenous species and their habitat preferences in Puck Bay (southern Baltic Sea)
Oceanologia 2014, 56(3), 603-628
http://dx.doi.org/10.5697/oc.56-3.603

Urszula Janas*, Halina Kendzierska
Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: oceuj@ug.gda.pl
*corresponding author

keywords: non-indigenous species, Baltic Sea, Puck Bay, Gammarus tigrinus,Marenzelleria spp.

Received 24 June 2013, revised 08 January 2014, accepted 17 February 2014.

This work was carried out under the "Ecosystem Approach to Marine Spatial Planning – Polish Marine Areas and the Natura 2000 Network" project founded by an EEA grant from Iceland, Lichtenstein and Norway and partly by research grant BW/G 220-5-0232-9.

Abstract

To date 11 non-indigenous benthic taxa have been reported in Puck Bay (southern Baltic Sea). Five of the 34 taxa forming the soft bottom communities are regarded as non-indigenous to this area. They are Marenzelleria spp., Mya arenaria, Potamopyrgus antipodarum, Gammarus tigrinus and Amphibalanus improvisus. Non-indigenous species comprised up to 33% of the total number of identified macrofaunal taxa (mean 17%). The average proportion of aliens was 6% (max 46%) in the total abundance of macrofauna, and 10% (max 65%) in the biomass. A significant positiverelationship was found between the numbers of native taxa and non-indigenous species. The number of native taxa was significantly higher on a sea bed covered with vascular plants than on an unvegetated one, but no such relationship was found for their abundance. No significant differences were found in the number and abundance of non-indigenous species between sea beds devoid of vegetation and those covered with vascular plants, Chara spp. or mats of filamentous algae. G. tigrinus preferred a sea bed with vegetation, whereas Marenzelleria spp. decidedly preferred one without vegetation.

  References ref

Baltic Sea Alien Species Database, 2010, Integrat. Informat. Syst. AquaNISPro ject, S. Olenin, D. Daunys,E. Leppäkoski & A. Zaiko (eds.), http://www.corpi.ku. lt/nemo/, [accessed 16 August2010].

Bick A., Burckhardt R., 1989, Erstnachweisvon Marenzelleriaviridis (Polychaeta, Spionidae) fürden Ostseeraum, miteinemBestimmungsschlüssel der SpionidenderOstsee, Mitt.Zool.Mus.Berlin,65, 237-247, http://dx.doi.org/10.1002/mmnz.19890650208

Blank M.,LaineA. O.,Jürss K.,BastropT.,2008,Molecularidentification key based on PCR/RFLPfor three polychaete sibling species of the genusMarenzelleria, andthespecies’ current distribution in theBaltic Sea, Helgoland Mar.Res., 62 (2),129-141, http://dx.doi.org/10.1007/s10152-007-0081-8

Bonsdorff E., 2006, Zoobenthicdiversity-gradients inthe BalticSea:Continuous post glacial succession in a stressed ecosystem, J. Exp. Mar. Biol. Ecol.,330 (1), 383-391, http://dx.doi.org/10.1016/j.jembe.2005.12.041

Boström C.,BonsdorffE.,1997,Communitystructure andspatialvariation ofbenthic invertebrates associated withZostera marina (L.) bedsinthe northern BalticSea, J. SeaRes.,37,153-166, http://dx.doi.org/10.1016/S1385-1101(96)00007-X

Daunys D.,Zettler M. L., 2006,Invasion oftheNorth Americanamphipod Gammarus tigrinusSexton, 1939intoCuronian Lagoon, southern-eastern BalticSea,Acta Zool. Lithuan., 16 (1), 20-26, http://dx.doi.org/10.1080/13921657.2006.10512705

Dobrzycka-Krahel A., Rzemykowska H., 2010, Firstrecords of Ponto-Caspian gammaridsin the Gulf of Gdańsk(southernBalticSea), Oceanologia, 52 (4), 727-735, http://dx.doi.org/10.5697/oc.52-4.727

DziubińskaA.,2011a,Mytilopsisleucophaeata,an aliendreissenidbivalve discoveredin the Gulf of Gdańsk(southernBalticSea),Oceanologia,53 (2), 651-655, http://dx.doi.org/10.5697/oc.53-2.651

DziubińskaA., 2011b, Tempo i kierunek sukcesji zespołów bentosowych w strefie przybrzeżnej Zatoki Gdańskiej,Ph.D.thesis,GdańskUniv.,Gdynia,1-171, (in Polish).

Dziubińska A.,Janas U.,2007,Submergedobjects-aniceplacetoliveand develop. Successionof fouling communitiesinthe Gulf of Gdańsk, Southern Baltic,Oceanol.Hydrobiol. Stud.,36 (4),65-78, http://dx.doi.org/10.2478/v10009-007-0026-1

Ezhova E., Spirido O., 2005, Patterns of spatial and temporal distribution of the Marenzelleria cf.viridispopulation in the lagoon and marine environmentin the southeastern BalticSea, Oceanol. Hydrobiol.Stud.,Suppl.1, 209-226.

Ezhova E., Żmudziński L., Maciejewska K., 2005, Long-term trends in the macrozoobenthos ofthe VistulaLagoon,southernBalticSea.Species compositionand biomass distribution, Bull. Sea Fisher.Inst.,1 (164), 54-73.

GrabowskiM., 2006, Rapidcolonizationof the PolishBalticcoast by an Atlantic palaemonid shrimpPalaemonelegans Rathke,1837, Aquat.Invasions,1 (3), 116-123, http://dx.doi.org/10.3391/ai.2006.1.3.3

Grabowski M., Konopacka A., Jażdżewski K., JanowskaE., 2006, Native gammarid species in retreatandinvasion of aliens in theVistulaLagoon (Baltic Sea,Poland),Helgol. Mar.Res.,60 (2),90-97, http://dx.doi.org/10.1007/s10152-006-0025-8

Gray J. S., 1997, Marinebiodiversity:patterns,threats and conservation needs, Biodivers. Conserv.,6 (1), 153-175, http://dx.doi.org/10.1023/A:1018335901847

GruszkaP., 1991, Marenzelleria viridis(Verrill,1873) (Polychaeta-Spionidae) - a new componentofshallow water benthic communityinthe SouthernBaltic, Acta Ichthyol. Piscat., 21, 57-65.

Gruszka P.,2002,Gammarus tigrinus(Sexton, 1939)(Crustacea, Amphipoda) -anewspeciesinthePuckBay(southernBaltic),Abstr. 4thEuropean Crustacean Conf., 22-26 July2002, Univ. Łodź, 40-41.

GruszkaP.,WięcaszekB., 2004, Palaemonelegans as food for cod inthe Gulf of Gdańsk, [in:] Book of abstracts, Baltic - the Sea of Aliens,25-27 August2004, Gdynia,27 pp.

GrzelakK.,KuklińskiP.,2010, Benthicassemblages associatedwith rocksina brackish environmentofsouthernBalticSea,J. MarineAssoc. UK,90 (01), 115-124, http://dx.doi.org/10.1017/S0025315409991378

Herkül K., Kotta J., Kotta I., Orav-Kotta H., 2006, E?ectsof physical disturbance, isolation and key macrozoobenthic species on community development, recolonisationand sedimentation processes, Oceanologia, 48 (S), 267-282.

JanasU., Zarzycki T.,Kozik P.,2004a, Palaemonelegans - a new component of the Gulf of Gdańskmacrofauna, Oceanologia, 46 (1), 143-146.

Janas U., Wocial J., Szaniawska A., 2004b, Seasonal and annual changes in the macrozoobenthic populations of the Gulfof Gdańskwith respect to hypoxia and hydrogen sulphide, Oceanologia, 46 (1), 85-102.

JanasU.,WysockiP.,2005, Hemimysis anomalaG. O. Sars,1907 (Crustacea, Mysidacea)- first record in the Gulf of Gdańsk, Oceanologia, 47 (3), 405-408.

JażdżewskiK.,KonopackaA.,GrabowskiM.,2004,Recentdrasticchangesin thegammarid fauna(Crustacea, Amphipoda) oftheVistulaRiver deltaic systeminPolandcausedby alieninvaders,Divers.Distrib., 10 (2),81-87, http://dx.doi.org/10.1111/j.1366-9516.2004.00062.x

Jażdżewski K., Konopacka A., Grabowski M., 2005, Native and alien malacostracan Crustaceaalong the PolishBalticSea coast in the twentieth century, Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 175-193.

JensenK. R., KnudsenJ.,2005, Asummary of alien marine benthic invertebrates in Danish waters, Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 137-162.

Kelleher B., Bergers P. J. M., van der Brink F. W. B., Giller P. S., van der Velde G., bij de Vaate A., 1998, Effectof exotic amphipod invasionson fish diet inthe lower Rhine,Archiv Hydrobiol.,143 (3), 363-382.

Kotta J.,Orav H., Sandberg-Kilpi E.,2001, Ecologicalconsequence of the introduction of the polychaete Marenzelleria cf. viridis into a shallow-water biotopeofthenorthernBaltic Sea, J. SeaRes.,46 (3-4),273-280, http://dx.doi.org/10.1016/S1385-1101(01)00088-0

Kotta J., Ólafsson E., 2003, Competitionfor food between the introduced polychaete Marenzelleria viridis (Verrill) and the native amphipod Monoporeia affnis LindströmintheBalticSea,J. SeaRes.,50 (1),27-35, http://dx.doi.org/10.1016/S1385-1101(03)00041-8

Kotta J.,LauringsonV., MartinG.,Simm M., Kotta I., HerkülK.,OjaveerH., 2008, Gulfof Rigaand PärnuBay,[in:]Ecologyof Balticcoastal water, U. Schiewer (ed.), Ecol. Stud. No. 197. Springer-Verlag, Berlin, Heidelberg,217-243.

Kotwicki L., 1997, Macrozoobenthos of sandy littoral zone of the Gulfof Gdańsk, Oceanologia, 39 (4), 447-460.

KotwickiL., BaczewskaA.,JanasU.,Kra jczyk J., SztyborK.,WęsławskiJ.M., KędraM., 2009,IncreasedhumanimpactontalitridsonthePolish coast, 5th Int. Symp. SandyBeaches SandyBeachesand coastal zone management, 19th-23rdOctober2009, Rabat, Morocco.

Kotwicki S., Miłostek A., Szymelfenig M., Witkowski A., Wołowicz M., 1993, Struktura idynamika zespołów bentosu w strefie brzegowej ZatokiPuckiejw rejonieoczyszczalni ścieków w Swarzewie, Arch.OchronyŚrodow., 3-4, 133-154.

Kruk-Dowgiałło L., Brzeska P., BłeńskaM., Opioła R., Kuliński M., Osowiecki A., 2009, Czy ochrona brzegów niszczy siedliska denne?Studium przypadku - progi podwodne w Gdyni Orłowie,polska inżynieria środowiska pięćlat po wstąpieniu do UniiEuropejskiej,[in:] MonografieKomitetu InżynieriiŚrodowiska PAN, M. Dudzińska& L. Pawłowski(eds.),60 (3), 125-136.

LegeżyńskaE., WiktorK., 1981, FaunadennaZatokiPuckiej właściwej, Zesz. Nauk. Wydz.BiNoZUG, 8, 63-77.

LeppäkoskiE.,Gollasch S.,Gruszka P.,OjaveerH., OleninS., PanovV., 2002, TheBaltic-aseaofinvaders,Can. J. Aquat. Sci.,59,1175-1188, http://dx.doi.org/10.1139/f02-089

Levine J. M., 2000, Speciesdiversityand biological invasions,relating local process to communitypattern, Science,288 (5467), 852-854, http://dx.doi.org/10.1126/science.288.5467.852

Levine J. M., D’AntonioC. M., 1999, Eltonrevisited,a review of evidencelinking diversity andinvisibility, Oikos, 87 (1), 15-26, http://dx.doi.org/10.2307/3546992

MacNeil C.,Dick J. T., ElwoodR. W.,1999,The dynamic ofpredationon Gammarus spp. (Crustacea:Amphipoda), Biol. Rev., 74,375-395, http://dx.doi.org/10.1017/S0006323199005368

MaximovA. A.,2011, Largescaleinvasion ofMarenzelleriaspp.(Polychaeta, Spionidae) intheEastern GulfofFinland, Baltic Sea, RussianJ. Biol. Invasions, 2 (1),11-19, http://dx.doi.org/10.1134/S2075111711010036

Nehring S., 2002,Biological invasionsinto German waters: an evolution of the importance of different human-mediated vectors for nonindigenous macrozoobenthic species, [in:] Invasive species in Europe:distribution, impacts and management, E. Leppäkoski, S. Gollasch & S. Olenin (eds.), Kluwer Acad. Publ., Dordrecht, 373-393.

NorkkoA.,BonsdorffE.,1996, Population responsesofcoastalzoobenthosto stress induced by drifting algal mats, Mar.Ecol.-Prog. Ser., 140, 141-151, http://dx.doi.org/10.3354/meps140141

Norkko A., Bonsdorff E., Norkko A., 2000, Driftingalgal mats as an alternative habitatfor benthic invertebrates,Species specific responses to transient resource, J. Exp. Mar. Biol. Ecol., 248 (1), 79-104, http://dx.doi.org/10.1016/S0022-0981(00)00155-6

Norkko J., Reed D. C., Timmermann K., Norkko A., GustafssonB. G., Bonsdor? E., Slomp C. P., Carstensen J., Conley D. J., 2012, Awelcome can of worms? Hypoxiamitigation by an invasive species,Global Change Biol., 18 (2),422-434, http://dx.doi.org/10.1111/j.1365-2486.2011.02513.x

NormantM.,Chrobak M.,SkóraK., 2002, TheChinesemittencrabEriocheir sinensis- an immigrant from Asiain the Gulfof Gdańsk, Oceanologia, 44 (1), 123-125.

NowackiJ., 1993, Termika, zasolenieigęstość wody, [in:] ZatokaPucka, K. Korzeniewski (ed.),Inst.Oceanogr. UG, 79-11.

Olenin S.,Leppäkoski E., 1999, Non-nativeanimals in the Baltic Sea:alteration of benthic habitats in coastal inlets and lagoons,Hydrobiologia, 393 (0),233-243 http://dx.doi.org/10.1023/A:1003511003766

OleninS., MinchinD., DaunysD., 2007, Assessment ofbiopollutioninaquatic ecosystems, Mar.Pollut.Bull.,55 (7-9),379-394, http://dx.doi.org/10.1016/j.marpolbul.2007.01.010

Orav-KottaH., KottaJ.,Herkül K., KottaI., Paalme T., 2009,Seasonal variability in the grazing potential of the invasive amphipod Gammarustigrinus and the native amphipod Gammarussalinus (Amphipoda:Crustacea)in the northernBalticSea,Biol. Invasions,11 (3),597-608, http://dx.doi.org/10.1007/s10530-008-9274-6

OrlovaM. I., TeleshI. V., BerezinaN. A., MaximovA. A., Litvinchuk L. F.,2006, E?ectof nonindigenousspeciesondiversityandcommunityfunctioningin the easternGulfof Finland(BalticSea),Helgol. Mar.Res.,60 (2),98-105, http://dx.doi.org/10.1007/s10152-006-0026-7

PaavolaM., Olenin S., Leppäkoski E., 2005, Areinvasive species most successful in habitats of low native speciesrichnessacrossEuropeanbrackish water seas?, Estuar. CoastalShelf Sci., 64 (4),738-750, http://dx.doi.org/10.1016/j.ecss.2005.03.021

PackalénA.,KorpinenS., LehtonenK. K.,2008, Theinvasiveamphipod species Gammarus tigrinus(Sexton1939)canrapidlychangelittoralcommunities inthe Gulf ofFinland (BalticSea),Aquat.Invasions,3 (4),405-412, http://dx.doi.org/10.3391/ai.2008.3.4.5

Pihl L., 1986, Exposure, vegetation and sediment as primary factors for mobile epibenthic faunal communitystructure and production in shallow marine soft bottom areas,Neth.J.SeaRes.,20 (1),75-83, http://dx.doi.org/10.1016/0077-7579(86)90063-3

Pyšek P., Jarošik V., Kučera T., 2002,Patterns of invasion in temperate naturereserves,Biol.Conserv., 104 (1),13-24, http://dx.doi.org/10.1016/S0006-3207(01)00150-1

Reise K., Olenin S., Thieltges D. W., 2006, Arealiens threatening European aquatic coastal ecosystems?,Helgol. Mar.Res.,60 (2),72-83, http://dx.doi.org/10.1007/s10152-006-0024-9

RudinskayaL. V.,GusevA. A.,2012,Invasion oftheNorthAmerican bivalve mollusk RangiacuneatatotheVistulaLagoon, BalticSea,Russ.J.Biol. Invasions,2, 115-128, (in Russianwith English summary).

Sax D. F.,2002, Nativeand naturalized plant diversityare positivelycorrelated in scrub communitiesofCalifornia and Chile, Divers.Distrib., 8 (4),193-210, http://dx.doi.org/10.1046/j.1472-4642.2002.00147.x

Schiewer U., 2008, Darss-Zingst Boddens,Northern RügenerBoddensand Schlei, [in:] Ecologyof Balticcoastal water, U. Schiewer (ed.),Ecol. Stud., Vol. 197, Springer-Verlag, Berlin-Heidelberg, 35-86.

Sikorski A. V.,Bick A.,2004,Revision ofMarenzelleriaMesnil, 1896 (Spionidae,Polychaeta), Sarsia, 89,253-275.

Smoła Z., 2012, Struktura zespołów makrozoobentosowych w rejonie projektowanego morskiego rezerwatu przyrody Kępa Redłowska, M.Sc. thesis,GdańskUniv., Gdynia.

Spicer J., JanasU., 2006, ThebeachfleaPlatorchestiaplatensis(Kroyer, 1845): a new addition to the Polish fauna (with a key to Baltic talitrid amphipods), Oceanologia, 48 (2),287-295.

Stachowicz J. I., WitlatchR. B., Osman R. W., 1999, Species diversityand invasion resistance in a marineecosystem,Science, 286 (5444),1577-1579, http://dx.doi.org/10.1126/science.286.5444.1577

Streftaris N., Zenetos A., Papathanassiou E., 2005, Globalizationin marine ecosystems:The story of non-indigenous marinespecies across Europeanseas, Oceanogr. Marine Biol., Ann. Rev.No. 43, 419-453.

SurowiecJ.,Dobrzycka-Krahel A.,2008,New data on the non-indigenous gammaridsin the VistulaDelta and the VistulaLagoon,Oceanologia, 50 (3), 443-447.

Szaniawska A., Normant M., Łapucki T., 2003, TheinvasiveamphipodGammarus tigrinusSexton, 1939, in Puck Bay, Oceanologia, 45, 507-510.

Szaniawska A., Normant M., ŁapuckiT., 2005, Gammarus tigrinusSexton1939 (Crustacea, Amphipoda) - a new immigrant in the Puck Bay,southernBaltic Sea, Oceanol. Hydrobiol. Stud., 34, 71-78.

Warzocha J., Gromisz S., Woźniczka A., Koper M., 2005, Distributionof Marenzelleriacf.viridis (Polychaeta: Spionidae) alongthePolishcoastof the BalticSea, Oceanol.Hydrobiol. Stud.,34 (Suppl.1),227-237.

Wawrzyniak-WydrowskaB., Gruszka P., 2005,Population dynamics ofalien gammarid speciesintheRiverOdraestuary,Hydrobiologia, 539 (1),13-25, http://dx.doi.org/10.1007/s10750-004-3081-6

Wenne R., WiktorK., 1982, Faunadennaprzybrzeżnychwód ZatokiGdańskiej, Stud.Mater. Oceanol. PAN, 39, Gdańsk, 137-171.

Winkler H. M., Debus L., 1996, Is the polychaete Marenzelleriaviridis an important food itemfor fish?,Proc. 13th Symp.BalticMar.Biol., 147-151.

Wolff W. J., 1999, Exoticinvadersof the meso-oligohalinezone of estuariesin the Netherlands:why are thereso many?, Helgoländ.Meeresunt.,52 (3-4),393-400, http://dx.doi.org/10.1007/BF02908913

WoźniczkaA.,Gromisz S.,WolnomiejskiN.,2011,Hypaniainvalida(Grube, 1960),a polychaetespeciesnewforthesouthernBalticestuarinearea:the Szczecin LagoonandtheRiverOdramouth,Aquat. Invasions,6 (1),39-46, http://dx.doi.org/10.3391/ai.2011.6.1.05

Zaiko A., Olenin S., Daunys D., Nalepa T., 2007, Vulnerability of benthic habitats to the aquatic invasivespecies,Biol.Invasions, 9 (6),703-714, http://dx.doi.org/10.1007/s10530-006-9070-0

ZettlerM. L.,BochertR., BickA., 1994, RöhrenbauundVertikalverteilungvon Marenzelleria viridis (Polychaeta:Spionidae)in einem Küstengewässer der südlichenOstsee, Rostock. Meeresbiol. Beiträg., 2, 215-225.

full, complete article (PDF - compatibile with Acrobat 4.0), 2933 KB


Epibionts and parasites on crustaceans (Copepoda, Cladocera, Cirripedia larvae) inhabiting the Gulf of Gdańsk (Baltic Sea) in very large numbers
Oceanologia 2014, 56(3), 629-638
http://dx.doi.org/10.5697/oc.56-3.629

Luiza Bielecka1,*, Rafał Boehnke
1Department of Marine Plankton Research, Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: ocelb@univ.gda.pl
*corresponding author
2Marine Ecology Department, Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland

keywords: Baltic Sea, Zooplankton crustaceans, Epibionts and parasites

Received 4 April 2013, revised 11 December 2013, accepted 10 January 2014.

This work was supported in part by grant No. BW/1320-5-0183-3 from the University of Gdańsk.

Abstract

The occurrence of epizoic filter-feeding Protozoa (Vorticella and Zoothamnium) and parasitic Protozoa (Ellobiopsis) on Calanoida was noticed in the Gulf of Gdańsk in 1998, 1999 and 2006. The relatively high (4-16% of all calanoids) level of infestation varied depending on the type of infestation (0.1-13% of the population of particular taxa). The dominant copepods – Acartia spp., Temora longicornis and Centropages hamatus - were attacked the most frequently (from 10.5% to 54% of all infested calanoids).
Epibiosis and parasitism were observed on all copepod developmental stages (adults, juveniles and nauplii). Epibionts and parasites were located on different parts of the body, but mainly on the prosome. Infestation by epibionts and parasites was not restricted to calanoid copepods: it was also detected in non-negligible numbers on other crustaceans, namely, Harpacticoida, Cladocera (Bosmina sp.) and Cirripedia larvae (nauplii) in the Gulf of Gdańsk.


  References ref

AlbainaA.,Irigo jen X.,2006, FecunditylimitationofCalanushelgolandicus,by the parasite Ellobiopsissp.,J. Plankton Res., 28 (4),413-418, http://dx.doi.org/10.1093/plankt/fbi129

Bielecka L., Ga j M., MudrakS., ŻmijewskaM. I., 2000, Theseasonal and short-term variability of zooplankton taxonomic compositionin shallow coastal area of the Gulf of Gdańsk, Oceanol. Stud., XXIX (1), 57-76.

ChiavelliA. D.,Mills E. L.,ThrelkeldS. T.,1993, Hostpreferences,seasonality, and communityinteractionsof zooplankton epibionts, Limnol. Oceanogr.,38, 574-583, http://dx.doi.org/10.4319/lo.1993.38.3.0574

Decaestecker E., Declerck S., De Meester L., EbertD., 2005, Ecological implications ofparasites innaturalDaphnia populations,Oecologia,144 (3), 382-390, http://dx.doi.org/10.1007/s00442-005-0083-7

Hirche H. J.,1974, DieCopepodenEurytemora affinis Poppe und Acartia tonsa Dana und ihre Besiedlung durch Myoschistoncentropagidarum Precht (Peritricha)in der Schlei, Kiel. Meeresforsch., 30, 43-64.

Ho J.,PerkinsP. S., 1985, Symbiontsof marinecopepod:an overview, Bull. Mar. Sci., 37, 586-598.

Hu X., Song W., 2001, Descriptionof Zoothamnium chlamydis sp. n. (Protozoa: Ciliophora: Peritrichida),an EctocommensalPeritrichousCiliate from CulturedScallop in North China,ActaProtozool.,40, 215-220.

JózefczukA.,GuzeraE.,BieleckaL.,2003,Short-termvariabilityof mesozooplankton at two stations(Gdynia,Sopot)inthe shallow water zone of the Gulf of Gdańsk, Oceanologia, 45 (2), 317-336.

Kimmerer W. J., McKinnon A., 1990, High mortality in a copepod population caused byparasitic dinoflagellate,Mar.Biol.,107,449-452, http://dx.doi.org/10.1007/BF01313428

KonovalovaG. V., 2008, ParasiticDinoflagellates and Ellobiopsids(Ellobiopsidae) of the Coastal Waters of the Sea of Japan, Russ. J. Marine Biol., 34 (1), 28-37, http://dx.doi.org/10.1134/S1063074008010045

MancaM., Beltrami M., Sonvico D., 1996, Onthe appearance of epibionts on the crustacean zooplankton of a large subalpine lake undergoing oligotrophication (L.Maggiore,Italy), Mem. Ist. Ital. Idrobiol.,54, 161-171.

MancaM., CarnovaleA., AlemaniP.,2004, Exotopicprotrusionsand ellobiopsid infection in zooplanktoniccopepodsofalarge, deepsubalpinelake, Lago Maggiore, innorthern Italy,J. PlanktonRes., 26 (11), 1257-1263, http://dx.doi.org/10.1093/plankt/fbh117

MudrakS., Żmijewska M. I., 2007, Spatio-temporal variability of mesozooplankton from the Gulf of Gdańsk (Baltic Sea) in 1999-2000, Oceanol. Hydrobiol. Stud., 36 (2), 3-19, http://dx.doi.org/10.2478/v10009-007-0007-4

Schiewer U., 2008, Ecology of Baltic coastal waters, Springer-Verlag, Berlin, 429 pp., http://dx.doi.org/10.1007/978-3-540-73524-3

Shields J. D., 1994, The parasitic Dino?agellates of marine Crustaceans, Ann. Rev. Fish Dis., 4, 241-271, http://dx.doi.org/10.1016/0959-8030(94)90031-0

SimmM.,OjaveerE.,2000, Dynamicsofcopepodsand ?sh larvae inPrnuBay (NEpart of the GulfofRiga)inthe spring-summerperiod, Proc.Estonian Acad. Sci. Biol. Ecol., 49, 317-326.

Sobol Z., SzumilasT.,1994, Causesof poor sanitaryconditionof marinecoastal waters of the Gulf ofGdańsk, [in:]Pollutionand restorationofthe Gulfof Gdańsk,Mater.Seminar, Univ. Gdansk,Gdynia,104-111, (in Polish).

TimofeevC. F.,1997,An occurrenceoftheparasiticDinoflagellataEllobiopsis chattoni (Protozoa: Mastigophora) on the Copepod Calanus finmarchicus (Crustacea:Copepoda)anda possibilitytousethe parasiticasabiological tag of local populations, Parazitologiya, 31 (4), 334-339, (in Russian).

Timofeev C. F.,2002, The effect of the parasitic dinoflagellate Ellobiopsis chattoni (Protozoa:Mastigophora) on the winter mortality of the calanoid copepod Calanus finmarchicus (Crustacea: Copepoda) in the Norwegian Sea, Parazitologiya, 36 (2), 158-162, (in Russian).

Visse M., 2007, Detrimentaleffect of peritrichciliates(Epistylissp.)as epibionts on the survival of the copepod Acartiabifilosa, Proc. Estonian Acad. Sci. Biol. Ecol., 56 (3), 173-178.

Walkusz W., Rolbiecki L., 2007, Epibionts(Paracineta)and parasites (Ellobiopsis) oncopepodsfromSpitsbergen(Kongsfjordenarea),Oceanologia,49 (3),369-380.

WiktorK.,1993, Theextent ofinfectionofCalanoidainthe GulfofGdańskby parasitic Protozoa, Stud. Mater. Oceanol.,64 (3), 243-253.

Wiktor K., Krajewska-Sołtys A., 1994,Occurrenceof epizoic andparasitic protozoans on Calanoidain the Southern Baltic, Bull. Sea Fish. Inst.,132 (2), 13-25.

Żmijewska M. I., NiemkiewiczE., BieleckaL., 2000,Abundance andspecies composition of plankton in the Gulfof Gdańsknear planned underwater outfall ofthe Gdańsk-Wschód (Gdańsk-East)sewage treatment plant, Oceanologia, 42 (3), 335-357.

full, complete article (PDF - compatibile with Acrobat 4.0), 211 KB

Communications

Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum
Oceanologia 2014, 56(3), 639-650
http://dx.doi.org/10.5697/oc.56-3.639

Zhuoping Cai1,2,3, Honghui Zhu2, Shunshan Duan3,*,
1Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture,
Beijing 100081, China,
2State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology,
Guangzhou 510070, China;
e-mail: ocelb@univ.gda.pl
*corresponding author

keywords: Allelopathic interaction, Prorocentrum donghaiense, Phaeodactylum tricornutum, Red tide

Received 25 August 2013, revised 26 March 2014, accepted 2 April 2014.

This study was supported by the Natural Science Foundation of China-GuangdongProvince Joint Key Project (U1133003), Science and Technology Planning Project ofGuangdong Province (2012B020307009), Open Fund from Key Laboratory of AquaticEutrophication and Control of Harmful Algal Blooms of Guangdong Higher EducationInstitutes, and Open Fund from Key Laboratory of Microbial Resources Collection andPreservation, Ministry of Agriculture.

Abstract

The interactions between the red-tide causing dinoflagellate Prorocentrum donghaiense and the marine diatom Phaeodactylum tricornutum were investigated using a co-culture experiment and an enriched culture filtrate experiment. The results showed that when the two microalgae were cultured together with different initialcell densities, the growth of one species was basically suppressed by the other one. In addition, the enriched culture filtrates of one species had generally inhibitoryeffects on the other one. Our result inferred that P. donghaiense and P. tricornutum would interfere with each other mainly by releasing allelochemicals into the culture medium, and that the degree of allelopathic effects was dependent on the initial cell densities and growth phases. The allelopathic interactions between microalgal species may contribute to the formation and succession of red tides.

  References ref

Addisie Y., Medellin A. C., 2012, Allelopathy in aquatic macrophytes: effects on growth and physiology of phytoplankton, Afr. J. Plant Sci., 6 (10), 270-276.

An M., Johnson I.R., Lovett J.V., 1996, Mathematical modeling of allelopathy. I. Phytotoxicity caused by plant residues during decomposition, Allelopathy J., 3 (1), 33-42.

Bertholdsson N., 2012, Allelopathy - a tool to improve the weed competitive ability of wheat with herbicide-resistant black-grass (Alopecurus myosuroides Huds.), Agronomy, 2 (4), 284-294, http://dx.doi.org/10.3390/agronomy2040284

Cai Z.P., Duan S. S., Wei W., 2009, Darkness and UV radiation provoked compensatory growth in marine phytoplankton Phaeodactylum tricornutum (Bacillariophyceae), Aquac. Res., 40 (13), 1559-1562, http://dx.doi.org/10.1111/j.1365-2109.2009.02218.x

Cai Z.P., Duan S. S., Zhu H.H., 2013, Compensatory growth of the bloomforming dinoflagellate Prorocentrum donghaiense induced by nitrogen stress, Oceanologia, 55 (1), 269-276, http://dx.doi.org/10.5697/oc.55-1.269

Cummings J.A., Parker I.M., Gilbert G. S., 2012, Allelopathy: a tool for weed management in forest restoration, Plant Ecol., 213 (12), 1975-1989, http://dx.doi.org/10.1007/s11258-012-0154-x

Feng Y. J.,Wang J.W., Jin Q., 2010, Asian corn borer (Ostrinia furnacalis) damage induced systemic response in chemical defence in Bt corn (Zea mays L.), Allelopathy J., 26 (2), 101-112

Gantar M., Berry J.P., Thomas S., Wang M. L., Perez R., Rein K. S., 2008, Allelopathic activity among Cyanobacteria and microalgae isolated from Florida freshwater habitats, FEMS Microbiol. Ecol., 64 (1), 55-64, http://dx.doi.org/10.1111/j.1574-6941.2008.00439.x

Guillard R. R. L., 1973, Division rates, [in:] Handbook of phycological methods: culture methods and growth measurements, J.R. Tein (ed.), Cambridge Univ. Press, Cambridge.

Hu Z.X., Mulholland M.R., Duan S. S., Xu N., 2012, Effects of nitrogen supply and its composition on the growth of Prorocentrum donghaiense, Harmful Algae, 13, 72-82, http://dx.doi.org/10.1016/j.hal.2011.10.004

Jonsson P.R., Pavia H., Toth G., 2009, Formation of harmful algal blooms cannot be explained by allelopathic interactions, Proc. Nat. Acad. Sci. USA, 106 (27), 11177-11182, http://dx.doi.org/10.1073/pnas.0900964106

Keating K. I., 1977, Allelopathic influence on blue-green bloom sequence in a eutrophic lake, Science, 196 (4292), 885-886, http://dx.doi.org/10.1126/science.196.4292.885

Keating K. I., 1978, Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure, Science, 199 (4332), 971-973, http://dx.doi.org/10.1126/science.199.4332.971

Khan M. B., Khan M., Hussain M., Farooq M., Jabran K., Lee D. J., 2012, Bio-economic assessment of different wheat-canola intercropping systems, Int. J. Agr. Biol., 14 (5), 769-774

Kremp A., Godhe A., Egardt J., Dupont S., Suikkanen S., Casabianca S., Penna A., 2012, Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions, Ecol. Evol., 2 (6), 1195-1207, http://dx.doi.org/10.1002/ece3.245

Laanaia N., Vaquer A., Fiandrino A., Genovesi B., Pastoureaud A., Cecchi P., Collos Y., 2013, Wind and temperature controls on Alexandrium blooms (2000- 2007) in Thau lagoon (Western Mediterranean), Harmful Algae, 28, 31-36, http://dx.doi.org/10.1016/j.hal.2013.05.016

Legrand C., Rengefors K., Fistarol G. O., Graneli E., 2003, Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects, Phycologia, 42 (4), 406-419, http://dx.doi.org/10.2216/i0031-8884-42-4-406.1

Lu D.D., Goebel J., Qi Y. Z., Zou J. Z., Han X.T., Gao Y.H., Li R.X., 2005, Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species, Harmful Algae, 4 (3), 493-505, http://dx.doi.org/10.1016/j.hal.2004.08.015

Meiners S. J., Kong C.H., Ladwig L.M., Pisula N. L., Lang K.A., 2012, Developing an ecological context for allelopathy, Plant Ecol., 213 (8), 1221-1227, http://dx.doi.org/10.1007/s11258-012-0078-5

Nagasaki K., Ando M., Itakura S., Imai I., Ishida Y., 1994, Viral mortality in the final stage of Heterosigma akashiwo (Raphidophyceae) red tide, J. Plankton Res., 16 (11), 1595-1599, http://dx.doi.org/10.1093/plankt/16.11.1595

Nagasoe S., Toda S., Shimasaki Y., Oshima Y., Uchida T., Honjo T., 2006, Growth inhibition of Gyrodinium instriatum (Dinophyceae) by Skeletonema costatum (Bacillariophyceae), Afr. J. Mar. Sci., 28 (2), 325-329, http://dx.doi.org/10.2989/18142320609504171

Persson A., Smith B.C., Wikfors G.H., Alix J.H., 2013, Differences in swimming pattern between life cycle stages of the toxic dinoflagellate Alexandrium fundyense, Harmful Algae, 21-22, 36-43, http://dx.doi.org/10.1016/j.hal.2012.11.005

Rengefors K., Legrand C., 2001, Toxicity in Peridinium aciculiferum- an adaptive strategy to outcompeteother winterphytoplankton,Limnol. Oceanogr.,46 (8), 1990-1997, http://dx.doi.org/10.4319/lo.2001.46.8.1990

Rice E. L., 1984, Allelopathy,2nd edn., Acad. Press,New York, 422 pp.

Smayda T. J., 1997, Harmful algal blooms: their ecophysiology and general relevance to phytoplankton bloomsinthesea,Limnol.Oceanogr., 42 (5),1137-1153, http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1137

TarutaniK.,Nagasaki K.,YamaguchiM., 2000, Viral impactson total abundance and clonal compositionof the harmful bloom-formingphytoplankton Heterosigma akashiwo, Appl. Environ.Microb., 66 (11), 4916-4920.

Yamasaki Y.,NagasoeS.,MatsubaraT., ShikataT., Shimasaki Y.,Oshima Y., Honjo T., 2007, Allelopathic interactions between the bacillariophyte Skeletonemacostatumand the raphidophyteHeterosigmaakashiwo, Mar. Ecol. Prog. Ser., 339, 83-92, http://dx.doi.org/10.3354/meps339083

YamasakiY., Nagasoe S., TameishiM., ShikataT.,Zou Y., Jiang Z., Matsubara T., Shimasaki Y., YamaguchiK., Oshima Y., Oda T., Honjo T., 2010, The role of interactions between Prorocentrum minimum and Heterosigmaakashiwo in bloomformation,Hydrobiologia,641 (1),33-44, http://dx.doi.org/10.1007/s10750-009-0052-y

Żak A., Musiewicz K., Kosakowska A., 2012, Allelopathic activity of the Baltic cyanobacteria againstmicroalgae,Estuar. Coast.Shelf Sci., 112, 4-10, http://dx.doi.org/10.1016/j.ecss.2011.10.007

full, complete article (PDF - compatibile with Acrobat 4.0), 146 KB


Absence of evidence for viral infection in colony-embedded cyanobacterial isolates from the Curonian Lagoon
Oceanologia 2014, 56(3), 651-660
http://dx.doi.org/10.5697/oc.56-3.651

Sigitas Sulcius1,4,*, Juozas Staniulis2, Ricardas Paskauskas1,2, Irina Olenina1,3, Airina Salyte4, Aurelija Ivanauskaite4, Evelina Griniene1
1Klaipeda University, Marine Science and Technology Centre,
H. Manto 84, LT-92294 Klaipeda, Lithuania,
2Nature Research Centre, Institute of Botany,
Žaliuju ežeru 49, LT-2021 Vilnius, Lithuania
3Environmental Protection Agency, Marine Research Department,
Taikos 26, LT-91149 Klaipeda, Lithuania
4Klaipeda University, Faculty of Natural Sciences and Mathematics, Biology Department,
H. Manto 84, LT-92294 Klaipeda, Lithuania;
e-mail: sigas@corpi.ku.lt
*corresponding author

keywords: Aphanizomenon flos-aquae, bloom dynamics, colony formation, defence strategy, lysis, lysogeny, Microcystis aeruginosa, virus infection, virus-host interactions, virus production

Received 21 October2013, revised 26 March 2014, accepted 12 May 2014.

This research was funded by a grant (No. MIP-036/2012) from the Research Council of Lithuania.

Abstract

The aim of the present study was to assess the frequency of viral infections in colony-embedded cells of the cyanobacteria Aphanizomenon flos-aquae and Microcystis aeruginosa collected from the brackish Curonian Lagoon. Natural and mitomycin C-treated A. flos-aquae and M. aeruginosa samples were examined for the presence of viruses and lysis by a combination of light-, epifluorescence and transmission electron microscopy techniques. Here we report a lack of evidence for virus infection, progeny formation and cell lysis in colony-embedded cells of A. flos-aquae and M. aeruginosa. These results indicated that viruses contribute little to the mortality of these cyanobacteria when the latter occur in colonies. Consequently, the results supported the hypothesis that colony formation can, at least temporarily, provide an efficient strategy for protection against virus-induced mortality. Finally, assuming that grazing has a negligible effect on colony-embedded cells in the Curonian Lagoon, we propose that most of the cyanobacterial biomass produced is lost from the pelagic food web by sedimentation.

  References ref

Baudoux A. C.,BrussaardC. P. D.,2005,Characterization ofdifferentviruses infecting the marine harmful algal bloom species Phaeocystisglobosa, Virology, 341 (1), 80-90, http://dx.doi.org/10.1016/j.virol.2005.07.002

Baudoux A. C., Noordeloos A. A. M., Veldhuis M. J. W., BrussaardC. P. D., 2006,VirallyinducedmortalityofPhaeocystis globosaduringtwospring bloomsin temperatecoastalwaters, Aquat. Microb.Ecol.,44 (3),207-217, http://dx.doi.org/10.3354/ame044207

Brussaard C. P. D.,Bratbak G.,Baudoux A. C.,Ruardij P.,2007,Phaeocystis and its interactionwith viruses,Biogeochemistry, 83 (1-3),201-215, http://dx.doi.org/10.1007/s10533-007-9096-0

Brussaard C. P. D.,KuipersB.,VeldhuisM. J. W.,2005,Amesocosmstudyof Phaeocystis globosa population dynamics I. Regulatory role of viruses in bloom control, HarmfulAlgae, 4 (5), 859-874, http://dx.doi.org/10.1016/j.hal.2004.12.015

CallieriC., 2010, Singlecells and microcoloniesof freshwater picocyanobacteria?: a common ecology, J. Limnol., 69 (2), 257-277, http://dx.doi.org/10.4081/jlimnol.2010.257

Cao H., Shimura Y., Masanobu K., Yin Y., 2014, Draft genome sequence of the toxic bloom-forming cyanobacterium Aphanizomenonflos-aquae NIES-81, Genome Announcements, 2 (1), e00044-14, http://dx.doi.org/10.1128/genomeA.00044-14

Cochran P.K., Paul J.H., 1998, Seasonal abundance of lysogenic bacteria in a subtropical estuary, Appl. Environ. Microb., 64 (6), 2308-2312.

Coulombe A.M., Robinson G.G.C., 1981, Collapsing Aphanizomenon flosaquae blooms: possible contributions of photo-oxidation, O2 toxicity, and cyanophages, Can. J. Bot., 59 (7), 1277-1284.

Deng L., Hayes P. K., 2008, Evidence for cyanophages active against bloomforming freshwater cyanobacteria, Freshwater Biol., 53 (6), 1240-1252, http://dx.doi.org/10.1111/j.1365-2427.2007.01947.x

Dillon A., Parry J.D., 2008, Characterization of temperate cyanophages active against freshwater phycocyanin-rich Synechococcus species, Freshwater Biol., 53 (6), 1253-1261.

Gasiūnaitė Z.R., Cardoso A.C., Heiskanen A. S., Henriksen P., Kauppila P., Olenina I., Pilkaitytė R., Purina I., Razinkovas A., Sagert S., Schubert H., Wasmund N., 2005, Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication, Estuar. Coast. Shelf Sci., 65 (1-2), 239-252, http://dx.doi.org/10.1016/j.ecss.2005.05.018

Gasiūnaitė Z.R., Olenina I., 1998, Zooplankton-phytoplankton interactions: a possible explanation of the seasonal succession in the Kuršiu Marios Lagoon, Hydrobiologia, 363 (1-3), 333-339.

Granhall U., 1972, Aphanizomenon flos-aquae: Infection by cyanophages, Physiol. Plantarum, 26 (3), 332-337.

Glauert A.M., Lewis P.R., 1998, Biological specimen preparation for transmission electron microscopy, [in:] Practical methods in electron microscopy, A.M. Glauert (ed.), Princeton Univ., Princeton, 175-223.

Hamm C. E., Simson D.A., Merkel R., Smetacek V., 1999, Colonies of Phaeocystis globosa are protected by a thin but tough skin, Mar. Ecol.-Prog. Ser., 187, 101-111, http://dx.doi.org/10.3354/meps187101

Hewson I., Govil S. R., Capone D.G., Carpenter E. J., Fuhrman J.A., 2004, Evidence of Trichodesmium viral lysis and potential significance for biogeochemical cycling in the oligotrophic ocean, Aquat. Microb. Ecol., 36 (1), 1-8, http://dx.doi.org/10.3354/ame036001

Hughes K.A., Sutherland I.W., Jones M.V., 1998, Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase, Microbiology, 144 (11), 3039-3047.

Jacobsen A., Bratbak G., Heldal M., 1996, Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae), J. Phycol., 32 (6), 923-927.

Jacobsen A., Larsen A., Martínez-Martínez J., Verity P.G., Frischer Mė., 2007, Susceptibility of colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) to viral infection, Aquat. Microb. Ecol., 48 (2), 105-112, http://dx.doi.org/10.3354/ame048105

Jassim S.A.A., Limoges R.G., 2013, Impact of external forces on cyanophage-host interactions in aquatic ecosystems, World J. Microb. Biot., 29 (10), 1751-1762, http://dx.doi.org/10.1007/s11274-013-1358-5

Jüurgens K., Güude H., 1994, The potential importance of grazing-resistant bacteria in planktonic systems, Mar. Ecol.-Prog. Ser., 112 (1), 169-188.

Kimura S., Yoshida T., Hosoda N., Honda T., Kuno S., Kamiji R., Hashimoto R., Sako Y., 2012, Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond, Appl. Environ. Microb., 78 (16), 5805-5811, http://dx.doi.org/10.1128/AEM.00571-12

Luft J.H., 1961, Improvements in epoxy resin embedding methods, J. Bioph. Biochem. Cytol., 9 (2), 409-414.

Lüurling M., Van Donk E., 2000, Grazer-induced colony formation in Scenedesmus: are there costs to being colonial?, Oikos, 88 (1), 111-118.

Łotocka M., 2001, Toxic effect of cyanobacterial blooms on the grazing activity of Daphnia magna Straus, Oceanologia, 43 (4), 441-453.

Martínez J. L., Rojo F., 2011, Metabolic regulation of antibiotic resistance, FEMS Microbiol. Rev., 35 (5), 768-789, http://dx.doi.org/10.1111/j.1574-6976.2011.00282.x

McDaniel L., Houchin L.A., Williamson S. J., Paul J.H., 2002, Lysogeny in marine Synechococcus, Nature, 415 (6871), 496, http://dx.doi.org/10.1038/415496a

Patel A., Noble R.T., Steele J.A., Schwalbach M. S., Hewson I., Fuhrman J.A., 2007, Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I, Nat. Protocols, 2 (2), 269-276, http://dx.doi.org/10.1038/nprot.2007.6

Paul J.H., Weinbauer M.G., 2010, Detection of lysogeny in marine environments, 30-33, [in:] Manual of aquatic viral ecology, S.W. Wilhelm, M. G. Weinbauer, & C.A. Suttle (eds.), ASLO.

Pilkaitytė R., Razinkovas A., 2006, Factors controlling phytoplankton blooms in a temperate estuary: Nutrient limitation and physical forcing, Hydrobiologia, 555 (1), 41-48, http://dx.doi.org/10.1007/s10750-005-1104-6

Pollard P.C., Young L.M., 2010, Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia, Acta Oecol., 36 (1), 114-119, http://dx.doi.org/10.1016/j.actao.2009.10.007

Ruardij P., Veldhuis M. J., Brussaard C.P., 2005, Modeling the bloom dynamics of the polymorphic phytoplankter Phaeocystis globosa: impact of grazers and viruses, Harmful Algae, 4 (5), 941-963.

Sato T., 1968, A modified method for lead staining of thin sections, J. Electron Microsc., 17 (2), 158-159.

Sellner K.G., Olson M.M., Kononen K., 1994, Copepod grazing in a summer cyanobacteria bloom in the Gulf of Finland, Hydrobiologia, 292/293 (1), 249-254, http://dx.doi.org/10.1007/BF00229948

Sulcius S., Staniulis J., Paüukauskas R., 2011, Morphology and distribution of phage-like particles in a eutrophic boreal lagoon, Oceanologia, 53 (2), 587-603, http://dx.doi.org/10.5697/oc.53-2.587

Šimek K., Weinbauer M.G., Hornk K., Jezbera J., Nedoma J., Dolan J. R., 2007, Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community, Environ. Microbiol., 9 (3), 789-800, http://dx.doi.org/10.1111/j.1462-2920.2006.01201.x

TangK. W.,2001, GrazingandcolonysizedevelopmentinPhaeocystis globosa (Prymnesiophyceae): the role of a chemicalsignal, J. Plankton Res.,25 (7), 831-842.

WaterburyJ. B.,ValoisF. W.,1993,Resistance toco-occurringphages enables marine Synechococcuscommunitiesto coexistwith cyanophages abundant in seawater, Appl. Environ. Microb., 59 (10), 3393-3399.

Weinbauer M. G.,SuttleC. A., 1999, Lysogenyand prophage inductionincoastal and offshore bacterial communities, Aquat.Microb. Ecol., 18 (3), 217-225.

Yamamoto Y., Shiah F. K., Chen Y. L., 2011, Importance of largecolony formation inbloom-formingcyanobacteriatodominateineutrophicponds, Int. J. Limnol., 47 (2), 167-173, http://dx.doi.org/10.1051/limn/2011013

YangZ.,KongF., 2012,Formation oflargecolonies:adefensemechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonassp., J. Limnol., 71 (1), 61-66.

Yoshida T., Nagasaki K., Takashima Y., Shirai Y., Tomaru Y., Takao Y., Sakamoto S., Hiroishi S., Ogata H., 2008a, Ma-LMM01 infecting toxic Microcystis aeruginosailluminatesdiversecyanophage genomestrategies,J. Bacteriol., 190 (5), 1762-1772, http://dx.doi.org/10.1128/JB.01534-07

Yoshida T., TakashimaY., Tomaru Y., Takao Y., Hiroishi S., Shirai Y., Nagasaki K., 2006, Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa, Appl.Environ.Microb.,72 (2), 1239-1247.

Yoshida M., Yoshida T., Kashima A., TakashimaY., HosodaN., Nagasaki K., Hiroishi S., 2008b, Ecological dynamics of the toxic bloom-forming cyanobacteriumMicrocystis aeruginosaanditscyanophagesinfreshwater, Appl. Environ.Microb., 74 (10), 3269-73, http://dx.doi.org/10.1128/AEM.02240-07

Zilius M.,BartoliM.,DaunysD.,PilkaityteR.,RazinkovasA.,2012, Patterns of benthic oxygen uptake in a hypertrophic lagoon:spatial variability and controllingfactors, Hydrobiologia, 699 (1), 85-98, http://dx.doi.org/10.1007/s10750-012-1155-4

full, complete article (PDF - compatibile with Acrobat 4.0), 131 KB


Large red cyanobacterial mats (Spirulina subsalsa Oersted ex Gomont) in the shallow sublittoral of the southern Baltic
Oceanologia 2014, 56(3), 661-666
http://dx.doi.org/10.5697/oc.56-3.661

Maria Włodarska-Kowalczuk1,*, Piotr Balazy1, Justyna Kobos2, Józef Wiktor1, Marek Zajączkowski1, Wojciech Moskal1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: maria@iopan.gda.pl
*corresponding author
2Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland

keywords: Baltic Sea, cyanobacteria, algal mats

Received 23 December 2013, revised 29 January 2014, accepted 17 February 2014.

Abstract

We report the first observation of large red cyanobacterial mats in the southernBaltic Sea. The mats (up to 2.5 m in diameter) were observed by SCUBA divers at 7.7 m depth on loamy sediments in the Gulf of Gdańsk in mid-November 2013. The main structure of the mat was formed by cyanobacteria Spirulina subsalsa Oersted ex Gomont; a number of other cyanobacteria, diatoms and nematode species were also present. After a few days in the laboratory, the red trichomes of S. subsalsa started to turn blue-green in colour,suggesting the strong chromatic acclimation abilities of this species.

  References ref

Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582, http://dx.doi.org/10.5697/oc.52-4.533

Dziubińska A., Janas U., 2007, Submerged objects - a nice place to live and develop. Succession of fouling communities in the Gulf of Gdańsk, Southern Baltic, Oceanol. Hydrobiol. St., 36 (4), 65-78, http://dx.doi.org/0.2478/v10009-007-0026-1

DziubińskaA., SzaniawskaA., 2010, Short-term studyon early successionstages offouling communitiesin thecoastalzone ofthePuck Bay (southern BalticSea), Oceanol. Hydrobiol.St., 39 (4), 3-16, http://dx.doi.org/10.2478/v10009-010-0055-z

Gutu A., Kehoe D. M., 2012, Emerging perspectiveson the mechanisms, regulation, and distribution of light color acclimationin cyanobacteria,Mol. Plant, 5 (1), 1-13, http://dx.doi.org/10.1093/mp/ssr054

Johansson G.,ErikssonB. K., PedersenM., Snoeijs P.,1998, Longtermchanges of macroalgal vegetationin the Skagerrak area, Hydrobiologia,385 (1-3), 121-138, http://dx.doi.org/10.1023/A:1003405826222

Komárek J.,Anagnostidis K.,2005,Band19/2.Cyanoprocaryota, 2.Teil: Oscillatoriales; Süsswasserflora von Mitteleuropa,GustavFisher Verlag, Jena.

Pliński M., 1975, The algae in the surface water of the Bay of Puck (Baltic)in the vegetative period of 1972, Bot. Mar.,18, 183-186.

PlińskiM.,KomárekJ.,2007, Flora of theGulfof Gdańskandadjacentwaters (South Baltic).Cyanobacteria(Cyanoprokaryota), Univ. Gdańsk,164 pp., (in Polish).

Rathsack-Künzenbach R., 1961, Zur Cyanophyceenflora der Westkste von Rügen I., Int. Rev. Ges. Hydrobiol.,46, 653-663.

Ringer Z., 1984, Phytoplankton of the southernBalticin 1982 and 1983, Bull. Sea Fish. Inst., Gdynia,33-37.

WallinA.,Qvarfordt S.,NorlingP.,KautskyH.,2011, Benthiccommunities in relationto wave exposureand spatialpositionson sublittoralboulders inthe BalticSea, Aquat.Biol.,12 (2), 119-128, http://dx.doi.org/10.3354/ab00329

WitkowskiA.,1993, Microphytobenthos, [in:]PuckBay,K. Korzeniewski(ed.), Inst. Oceanogr.Univ. Gdańsk,395-415, (in Polish).

full, complete article (PDF - compatibile with Acrobat 4.0), 750 KB