Oceanologia No. 56 (4) / 14
Contents
Papers
-
Formation and species composition of stormcast beach wrack in the Gulf of Riga, Baltic Sea: Ülo Suursaar, Kaire Torn, Georg Martin, Kristjan Herkül, Tiit Kullas
-
Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea: Tomasz Petelski, Piotr Markuszewski, Przemysław Makuch, Andrzej Jankowski, Anna Rozwadowska
-
Nutrient turnover at the hypoxic boundary: flux measurements and model representation for the bottom water environment of the Gulf of Riga, Baltic Sea: Elvita Eglīte, Aigars Lavrinovičs, Bärbel Müller-Karulis, Juris Aigars, Rita Poikāne
-
Regional algorithms for the estimation of chlorophyll and suspended matter concentration in the Gulf of Finland from MODIS-Aqua satellite data: Svetlana Vazyulya, Alexander Khrapko, Oleg Kopelevich, Vladimir Burenkov, Tatyana Eremina, Alexey Isaev
-
Annual phytoplankton dynamics in the Gulf Saint Vincent, South Australia, in 2011: Sophie C. Leterme, Jan-Georg Jendyk, Amanda V. Ellis,
Melissa H. Brown, Tim Kildea
-
Gonad maturity in female Chinese mitten crab Eriocheir sinensis from the southern Baltic Sea – the first description of ovigerous females and the embryo developmental stage: Dagmara Wójcik, Monika Normant
-
Baltic herring (Clupea harengus membras) spawning grounds on the Lithuanian coast: current status and shaping factors: Aleksej Šaškov, Andrius Šiaulys, Martynas Bučas, Darius Daunys
-
Population structure, morphometry and individual condition of the non-native crab Rhithropanopeus harrisii (Gould, 1841), a recent coloniser of the Gulf of Gdańsk (southern Baltic Sea): Joanna Hegele-Drywa, Monika Normant, Barbara Szwarc, Anna Podłuska
-
Bacterial community structure influenced by Coscinodiscus sp. in theVistula river plume: Anetta Ameryk, Richard L. Hahnke, Sławomira Gromisz, Janina Kownacka, Mariusz Zalewski, Lena Szymanek, Joanna Całkiewicz, Julita Dunalska, Jens Harder
-
Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed: Szymon Uścinowicz, Wojciech Jegliński, Grażyna Miotk-Szpiganowicz, Jarosław Nowak, Urszula Pączek, Piotr Przezdziecki, Kazimierz Szefler, Grzegorz Poręba
Communications
Papers
Formation and species composition of stormcast beach wrack in the Gulf of Riga, Baltic Sea
Oceanologia 2014, 56(4), 673-695
http://dx.doi.org/10.5697/oc.56-4.673
Ülo Suursaar*,
Kaire Torn,
Georg Martin,
Kristjan Herkül,
Tiit Kullas
Estonian Marine Institute, University of Tartu,
Mäealuse 14, EE–12618 Tallinn, Estonia;
e-mail: ulo.suursaar@ut.ee
*corresponding author
keywords:
Beach wrack, waves, currents, storms, hydrodynamic modelling, biodiversity, macrovegetation
Received 25 November 2013, revised 10 April 2014, accepted 23 April 2014.
The study was supported by the EU Life+ project MARMONI "Innovative approaches for marine biodiversity monitoring and assessment of conservation status of nature values in the Baltic Sea", ESF grant No. 8980, Estonian target financed project SF0180104s08 and Institutional research funding IUT2-20 of the Estonian Research Council.
Abstract
The aim of the study was to investigate hydrodynamic effects on the formation of beach wrack at three locations in the northern Baltic Sea and to quantify the differences between the composition of species found in the beach wrack and in the neighbouring sea. Hydrodynamic measurements and modelling indicated that the beach wrack was mostly of local origin and that it was formed during high sea level and wave events. Comparison of the methods of beach wrack sampling and seabed sampling (diver, underwater video) demonstrated that beach wrack sampling can be considered an alternative tool for describing the species composition of macrovegetation in near-coastal sea areas. Although the hydrodynamic variability is greater in autumn and more biological material is cast ashore, the similarity between the two sampling methods was higher in spring and summer.
References
BiberP. D.,2007, Hydrodynamic transportof driftingmacroalgaethrougha tidal
cut,Estuar. Coast.Shelf Sci.,74 (3),565-569,
http://dx.doi.org/10.1016/j.ecss.2007.04.019
Boller M. L.,CarringtonE.,2006, Insitumeasurements of hydrodynamic forces imposedon
ChondruscrispusStackhouse,J. Exp.Mar.Biol. Ecol.,337 (2), 159-170,
http://dx.doi.org/10.1016/j.jembe.2006.06.011
Bučas M., DaunysD., Olenin S., 2009, Recentdistributionand stock assessmentof the red alga
Furcellarialumbricalison an exposed BalticSea coast:combined use of field survey and modeling methods, Oceanologia,51 (3), 341-359,
http://dx.doi.org/10.5697/oc.51-3.359
Clarke K. R., 1993, Non-parametricmultivariate analysis of changes in community structure,
Aust. J. Ecol., 18 (1),117-143,
http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x
ClarkeK. R.,CorleyR. N.,2006,Primer v6.usermanual/tutorial,Primer-E, Plymouth, 192 pp.
ClarkeK. R., WarwickR. M., 2001, Changeinmarinecommunities: an approach to statistical
analysis and interpretation, 2nd edn., Primer-E, Plymouth, 0/1-17/18+ App.
Desrochers R. E., AnandM., 2004, Fromtraditional diversity indicesto taxonomic diversity
indices, Int. J. Ecol. Environ.Sci., 30, 85-92.
DuganJ. E., Hubbard D. M., McCrarcyM. D., PiersonM. O., 2003, Theresponse of macrofauna
communitiesand shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern
California,Estuar. Coast. Shelf Sci., 58 (S), 25-40.
FilipkowskaA.,LubeckiL.,Szymczak-ŻyłaM.,KowalewskaG.,2009,Factors affecting the
occurrence of algae on the Sopot beach (BalticSea), Oceanologia, 51 (2), 233-262,
http://dx.doi.org/10.5697/oc.51-2.233
Gonçalves S. C.,MarquesJ. S., 2011, Theeffectsof seasonand wrack subsidy on the
community functioning of exposed sandy beaches, Estuar. Coast. Shelf Sci.,
95 (1), 165-177,
http://dx.doi.org/10.1016/j.ecss.2011.08.036
HeipC., EngelsP., 1974,Comparing species diversity andevenness indices, J.
Mar. Biol. Assoc. UK, 54 (03), 559-563,
http://dx.doi.org/10.1017/S0025315400022748
HELCOM,2012, Checklistof BalticSea macro-species,Baltic Sea Environ.Proc. No. 130.
HerkülK.,Kotta J.,Pärno jaM.,2011,Effect ofphysicaldisturbanceonthe soft
sediment benthic macrophyte and invertebrate community in the northern BalticSea, Boreal Environ.
Res., 16 (Suppl.A), 209-219.
Heugel C. A., 1851/52,Bemerkungen und Beiträgezur Florader Ostseeprovinzen, Corr.-bl.
Naturforsch. Ver. zu Riga, 5, 113-152.
HeugelC. A.,MüllerC.,1847,Zur Flora derOstseeprovinzen, VII.Corr.-bl.
Naturforsch. Ver. zu Riga, 2, 48-50, 69-71.
Imamura G. J., ThompsonR. S., Boehm A. B., Jay J.,2011, Wrackpromotes the persistenceof
fecalindicatorbacteria inmarinesandsand seawater, FEMS Microbiol.Ecol.,77 (1),40-49,
http://dx.doi.org/10.1111/j.1574-6941.2011.01082.x
Ince R., Hyndes G. A., Lavery P. S., Vanderklift M. A., 2007, Marinemacrophytes directlyenhance
abundances ofsandybeach fauna through provisionoffood and habitat, Estuar. Coast.Shelf
Sci., 74 (1-2),77-86,
http://dx.doi.org/10.1016/j.ecss.2007.03.029
JaagusJ., Suursaar Ü.,2013, Long-termstorminessandsealevel variationson the
Estonian coastoftheBalticSeainrelationtolarge-scaleatmospheric
circulation, Est. J. Earth Sci., 62 (2), 73-92,
http://dx.doi.org/10.3176/earth.2013.07
Jędrzejczak M. F.,2002a, Stranded Zosteramarina L. vs wrack fauna community interactionson a
Balticsandy beach (Hel,Poland):a short-term pilot study. Part I. Driftlineeffects of
fragmented detritivory,leaching and decay rates, Oceanologia, 44 (2), 273-286.
Jędrzejczak M. F.,2002b, Spatio-temporaldecay'hot spots'ofstranded wrack in a Baltic
sandy coastal system. Part I. Comparativestudy of the pattern: 1 type wrack vs 3 beach sites,
Oceanologia, 44 (4), 491-512.
Kautsky H., van der MaarelE., 1990, Multivariateapproaches to the variation in phytobenthic
communities and environmental vectors in the Baltic Sea, Mar. Ecol.-Prog.Ser.,60 (1-2),169-184,
http://dx.doi.org/10.3354/meps060169
Kautsky H., Martin G., Mäkinen A., BorgielM., Vahteri P., Rissanen J.,
1999,Structureofphytobenthicandassociatedanimalcommunitiesinthe
GulfofRiga,Hydrobiologia,393 (0),191-200,
http://dx.doi.org/10.1023/A:1003510105274
Kersen P.,2012, Firstfindings of the benthic macroalgae Vaucheria cf.dichotoma (Xanthophyceae)
and Punctariatenuissima (Phaeophyceae)in Estonian coastal waters, Est.J. Ecol.,
61 (2),135-147,
http://dx.doi.org/10.3176/eco.2012.2.05
KersenP., Martin G.,2007,Annual biomasslossoftheloose-lyingredalgal
communityviaacroalgal beach castsinthe Väinameriarea,NEBalticSea, Proc. Est.
Acad. Sci. Biol. Ecol., 56 (4), 278-289.
KirkmanH., Kendrick G. A., 1997, Ecological significance and commercial harvesting
ofdriftingand beachcast macroalgae and seagrasses inAustralia: areview,J.Appl.
Phycol., 9 (4), 311-326,
http://dx.doi.org/10.1023/A:1007965506873
Kotwicki L., WęsławskiJ. M., RaczyńskaA., Kupiec A., 2005, Depositionof large organic
particles(macrodetritus)ina sandy beach system(PuckBay,Baltic Sea), Oceanologia, 47
(2), 181-199.
Kotta J.,PaalmeT.,MartinG., Mäkinen A., 2000, Majorchanges in macroalgae community
composition affect the food and habitat preference of Idotea baltica, Int. Rev. Hydrobiol.,85
(5-6), 697-705.
KovtunA., TornK., Martin G., Kullas T., Kotta J., Suursaar Ü., 2011, Influence of abiotic
environmentalconditionsonspatial distributionofcharophytes in the coastal waters of West
EstonianArchipelago,BalticSea, J. Coastal Res., Spec. Iss. 64 (1), 412-416.
LastraM.,deLaHuzR.,Sanchez-MataA. G.,RodilI. F.,AertsK.,Beloso S., Lopez
J., 2006, Ecology of exposed sandy beaches in northern Spain: environmental factors controlling
macrofauna communities, J. Sea Res., 55 (2), 128-140,
http://dx.doi.org/10.1016/j.seares.2005.09.001
Lepik E., 1925, Põisadru (FucusvesiculosusL.)ja selle majanduslik tähtsus, Agronoomia, 5
(4), 135-144.
Lobban C. S.,HarrisonP. J.,1994,Seaweed ecology and physiology,Cam- bridge
Univ. Press,Cambridge,366 pp.,
http://dx.doi.org/10.1017/CBO9780511626210
Magurran A. E., 1988, Ecologicaldiversityand itsmeasurement,Princeton Univ.
Press, Princeton,
http://dx.doi.org/10.1007/978-94-015-7358-0
Martin G.,1999,Distribution of phytobenthosbiomass in theGulf of Riga
(1984-1991),Hydrobiologia, 393, 181-190,
http://dx.doi.org/10.1023/A:1003517427506
Martin G., 2000, Phytobenthic communitiesof the Gulf of Riga and the InnerSea of the
West-Estonian Archipelago,TartuUniv. Press, Tartu.
Martin G., Torn K., KottaJ., Orav-Kotta H., 2003, Estonianmarine phytobenthos monitoring
programme; preliminary results and future perspectives, Proc. Est. Acad. Sci. Biol. Ecol., 52 (2),
112-124.
Möller T., Martin G., 2007, Thedistribution of the eelgrass Zostera marina in the coastal waters
ofEstonia, NEBalticSea,Proc.Est.Acad. Sci.Biol.Ecol.,
56 (4),270-277.
Müller C.,1852/53, Versucheines Vegetationsgemäldes von Oesel, Corr.-bl.
Naturforsch. Ver.zu Riga,6, 1-26.
Ochieng C. A., Erftemeijer P. L. A., 1999, Accumulationof seagrass beach cast along the Kenyan
coast:a quantitative assessment,Aquat. Bot., 65 (1-4),221-238,
http://dx.doi.org/10.1016/S0304-3770(99)00042-X
OldhamC. E., Lavery P. S., McMahonK., PattiaratchiC., ChiffingsT. W., 2010, Seagrasswrack
dynamicsinGeographeBay, WesternAustralia, Rep.WA Dept.Transport/Shire of Busselton,
23 pp.,[http://www.transport.wa.gov.au/mediaFiles/marine/MAC-R-PortGeo-SeagrassWrack-Synopsis.pdf].
Orr M., Zimmer M., Jelinski D. E., Mews M., 2005, Wrack depositionon different beach types:
spatial and temporal variation in the pattern of subsidy,Ecology,
86 (6),1496-1507,
http://dx.doi.org/10.1890/04-1486
Pennings S. C., CarefootT. H., Zimmer M., Danko J. P., Ziegler A., 2000, Feeding preferencesof
supralittoral isopodsand amphipods,Can. J. Zoolog.,78 (11), 1918-1929,
http://dx.doi.org/10.1139/z00-143
Pullisaar T., 1961, Märkmeid Pärnu lahe p~ohjataimestiku kohta,ENSV TA Toimetised. Biol., 10,
340-346.
StatSoftInc., 2012, Electronicstatisticstextbook, Tulsa.
Suursaar Ü., 2013, Locallycalibrated wave hindcasts in the Estoniancoastal sea in
1966-2011,Est. J. Earth Sci., 62 (2), 42-56,
http://dx.doi.org/10.3176/earth.2013.05
Suursaar Ü., KullasT., 2006, Influenceof wind climate changes on the mean sea level and
current regime in the coastal waters of west Estonia,Baltic Sea, Oceanologia, 48 (3),361-383.
Suursaar Ü., Kullas T., Otsmann M., Saaremäe I., Kuik J.,Merilain M.,
2006, HurricaneGudrunand modelling its hydrodynamic consequencesin the
Estoniancoastal waters, Boreal Environ.Res., 11 (2), 143-159.
Suursaar Ü., KullasT.,Aps R.,2012, Currentsandwaves inthe northernGulf of Riga:
measurement and long-termhindcast,Oceanologia,54 (3),421-447,
http://dx.doi.org/10.5697/oc.54-3.421
TornK., MartinG., 2011, Assessment method for the ecological statusof Estonian coastal waters
based on submerged aquatic vegetation,[in:]Sustainable developmentand planning, C. A. Brebbia
& E. Beriatos (eds.),V. WITPress, Southampton, 443-452,
http://dx.doi.org/10.2495/SDP110371
Torn K., Krause-Jensen D., MartinG., 2006, Presentand past depth distributionof bladderwrack
(Fucus vesiculosus)in the Baltic Sea, Aquat.Bot., 84 (1), 53-62,
http://dx.doi.org/10.1016/j.aquabot.2005.07.011
ViikmäeB., SoomereT., 2014,Spatialpattern ofcurrent-drivenhitstothe
nearshorefroma majormarinefairwayintheGulfofFinland,J. Marine Syst.,129, 106-117,
http://dx.doi.org/10.1016/j.jmarsys.2013.06.014
vonLuceJ. W. L.,1823,TopographischeNachrichten vonderInselOesel,in
medicinischer und ökonomischerHinsichtRiga, W. F. Häcker, 369-373.
WarwickR.,LightJ., 2002, Deathassemblages of molluscson StMartin'sFlats, Islesof
Scilly: asurrogateforregionalbiodiversity?, Biodivers.Conserv.,
11 (1), 99-112,
http://dx.doi.org/10.1023/A:1014094829984
Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea
Oceanologia 2014, 56(4), 697-710
http://dx.doi.org/10.5697/oc.56-4.697
Tomasz Petelski1,
Piotr Markuszewski1,*,
Przemysław Makuch1,
Andrzej Jankowski1,
Anna Rozwadowska2
1Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: pmarkusz@iopan.gda.pl
*corresponding author
e-mail: petelski@iopan.gda.pl
e-mail: makuch@iopan.gda.pl
e-mail: jankowsk@iopan.gda.pl
2Marine Physics Department, Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
e-mail: ania@iopan.gda.pl
keywords:
Sea spray aerosol, coarse aerosol fluxes, air-sea interaction, marine boundary layer, aerosol concentration gradient
Received 5 March 2014, revised 7 May 2014, accepted 14 May 2014.
This work was supported through the National Science Centre grant NN 306315536; support for this study was also provided by the project "Satellite Monitoring of the Baltic Sea Environment – SatBałtyk" funded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.
Abstract
The results of studies of the vertical gradient of aerosolconcentration measurements made during cruises of r/v "Oceania" between 2008 and 2012 are presented. Using the results from those experiments, sea spray emission fluxes were calculated for all particles of sizes in the range from 0.5 µmto 8 µm, as well as for particles of sizes from fifteen channels of 0.5 µm width. The information obtained was further used to calculate the Sea Salt Generation Function (SSGF) for the Baltic Sea depending on the wind speed and the aerosol size distribution.
References
AndreasE. L.,1998, Anew sea-spraygenerationfunctionforwindspeedsup to
32 m s
-1, J. Phys.Oceanogr.,28 (11), 2175-2184,
http://dx.doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2
Andreas E. L., 2007, Comment on 'Verticalcoarse aerosol fluxes in the atmospheric surface layer
over the North Polar Watersof the Atlantic'by Tomasz Petelski and JacekPiskozub,J. Geophys.
Res. Oceans,112 (C11),
http://dx.doi.org/10.1029/2007JC004184
Andreas E. L., Jones K. F., Fairall C. W., 2010,Production velocity ofsea spray
droplets,J. Geophys.Res.,115,C12065,
http://dx.doi.org/10.1029/2010JC006458
Blanchard D. C.,1963,Theelectrificationoftheatmosphere byparticlesfrom bubbles in
thesea,Prog.Oceanogr.,1,73-202,
http://dx.doi.org/10.1016/0079-6611(63)90004-1
ByčenkienėS., Ulevicius V., Prokopčiuk N., JasinevičienėD., 2013, Observations of the
aerosol particle number concentration in the marineboundary layer over the south-eastern Baltic
Sea, Oceanologia, 55 (3), 573-598,
http://dx.doi.org/10.5697/oc.55-3.573
ChomkaM.,PetelskiT.,1996, Marineaerosolfluxesinthecoastalzone-BAEX
experimentaldata, Oceanologia, 38, 469-484.
ChomkaM., PetelskiT.,1997, Modellingthe sea aerosol emissioninthe coastal zone,
Oceanologia, 39 (3), 211-225.
Clarke A. D., Owens S. R., Zhou J.,2006, An ultrafine sea-salt flux from
breakingwaves: Implicationsforcloudcondensationnucleiintheremote marine
atmosphere, J. Geophys.Res.,111,D06202,
http://dx.doi.org/10.1029/2005JD006565
de Leeuw G.,Neele F. P.,Hill M., SmithM. H.,VignatiE.,2000, Productionof sea spray
aerosol in the surf zone, J. Geophys.Res., 105 (D24), 29397-29409,
http://dx.doi.org/10.1029/2000JD900549
de Leeuw G., AndreasE. L., AnguelovaM. D., FairallC. W., Lewis E. R., O'Dowd C., Schulz M.,
SchwartzS. E., 2011, Productionflux of sea spray aerosol, Rev. Geophys.,49, RG2001,
http://dx.doi.org/10.1029/2010RG000349
DrozdowskaV.,2007, Seasonaland spatial variabilityof surfaceseawater fluorescence
properties in the Baltic and Nordic Seas:results oflidar experiments,
Oceanologia, 49 (1), 59-69.
DrozdowskaV.,FredaW.,BaszanowskaE.,RudźK.,DareckiM.,HeldtJ. R., Toczek H.,
2013, Spectral propertiesof natural and oil polluted Baltic seawater
- resultsof measurements and modelling,Eur.Phys.J.Special Topics,222, 2157-2170,
http://dx.doi.org/10.1140/epjst/e2013-01992-x
DrozdowskaV.,Fateyeva N. L., 2013, Spectrophotometric studyof naturalBaltic surfactants,
[in:]Hydrobiologyinenvironment protection, T. M. Traczewska
& B. Hanus-Lorenz, Oficyna Wyd.Polit. Wroc., Wrocław,25-32.
FitzgeraldJ. W.,1975,Approximationformulasfortheequilibriumsizeofan aerosol
particle as a function of its dry size and compositionand the relative humidity,J.Appl.
Meteorol., 14,1044-1049,
http://dx.doi.org/10.1175/1520-0450(1975)014<1044:AFFTES>2.0.CO;2
Gong S. L., 2003, Aparameterization of sea-saltaerosol sourcefunctionforsub- and
super-micron particles,GlobalBiogeochem. Cy.,17(4),1097,
http://dx.doi.org/10.1029/2003GB002079
GongS. L.,2003,Canadian Aerosol Module: Asizesegregatedsimulation of
atmospheric aerosol processes for climate and air quality models 1. Module development,J.
Geophys.Res.,107 (D24),4779,
http://dx.doi.org/10.1029/2001JD002002
KeeneW. C.,MaringH.,MabenJ. R.,KieberD. J., PszennyA. A.,DahlE. E., Sander R.,
2007, Chemical and physical characteristics of nascent aerosols producedby burstingbubbles at
a modelair/sea interface,J. Geophys.Res. Atmosph., 112 (D21), 16 pp.,
http://dx.doi.org/10.1029/2007JD008464
KowalczukP.,CooperW. J.,WhiteheadR. F.,DurakoM. J., SheldonW.,2003,
Characterization of CDOMinan organic-richriverand surroundingcoastal ocean in the South
Atlantic Bight, Aquat.Sci., 65 (4), 384-401, http://dx.doi. org/10.1007/s00027-003-0678-1.
Kowalczuk P., Zabłocka M., Sagan S., Kuliński K., 2010, Fluorescencemeasuredin situas a proxy
of CDOMabsorptionandDOCconcentration intheBaltic Sea, Oceanologia, 52 (3), 431-471,
http://dx.doi.org/10.5697/oc.52-3.431
Kudryavtsev V. N., MakinV. K., 2009, Model of the spumesea spray generation, Geophys.Res.
Lett., 36, L06801,
http://dx.doi.org/10.1029/2008GL036871
LeihtmanD. L.,1970, Physicsof theatmosphericboundarylayer,Russianedn.,
Hidrometeoizdat. Leningrad.
LeppärantaM.,Myrberg K., 2009,Physical oceanography oftheBaltic Sea, Springer,
Chichester,40 pp.,
http://dx.doi.org/10.1007/978-3-540-79703-6
LewandowskaA. U., FalkowskaL. M., 2013, Sea salt in aerosols over the southern Baltic.Part 1.
The generationand transportation of marineparticles, Oceanologia, 55 (2), 279-298,
http://dx.doi.org/10.5697/oc.55-2.279
LewisE. R., Schwartz S. E., 2004,Seasaltaerosolproduction:mechanisms, methods,
measurements andmodels- Acriticalreview,Geophys.Monogr. Ser., Vol. 152, AGU,
Washington, 413 pp.
Long M. S., KeeneW. C.,KieberD. J.,EricksonD. J., MaringH.,2011, Asea- state based
source functionfor size-and composition-resolved marine aerosol production, Atmos.Chem.
Phys., 11 (3),1203-1216,
http://dx.doi.org/10.5194/acp-11-1203-2011
Massel S. R., 2007, Marineaerosol fluxes,[in:] Oceanwaves breaking and marine aerosol fluxes,
Springer,New York, 229-246.
ModiniR. L.,Harris B.,Ristovski Z.,2010,The organicfraction ofbubble-
generated,accumulationmode Sea Spray Aerosol (SSA), Atmos. Chem. Phys.,
10 (6), 2867-2877,
http://dx.doi.org/10.5194/acp-10-2867-2010
Monahan E. C.,SpielD. E.,DavidsonK. L.,1986,Amodelofmarine aerosol generation
viawhitecapsandwavedisruption, [in:]Oceanicwhitecapsand theirroleinair-sea
exchangeprocesses,E. C.Monahan& G.MacNiocaill, Reidel, Dordrecht, 167-174.
Monahan E. C., 1988, Modeling the generation of marine aerosols at the sea surface, Oceanologia,
26, 19-22.
Monin A. C., ObukhovA. M., 1953, Bezrazmernyje harakterustiki turbulentnosti w priziemnom sloe
atmosfery,DAN SSSR, 93 (2), 223-226.
Mulcahy C., O'Dowd D., JenningsS. G.,CeburnisD.,2008, Significant
enhancement of aerosol optical depth in marine air under high wind conditions, Geophys.Res.
Lett., 35 (16), L16810.
NorrisS. J., BrooksI. M.,Hill M. K.,BrooksB. J., SmithM. H.,SprosonD. A.,
2012, Eddycovariancemeasurements ofthesea sprayaerosolfluxoverthe open ocean, Atmos.
Chem. Phys.,8 (3), 555-563.
Ovadnevaite J., MandersA.,de Leeuw G.,CeburnisD.,MonahanC.,Partanen A.-I.,etal.
2013,Aseasprayaerosolfluxparameterizationencapsulating wavestate, Atmospheric
ChemistryandPhysics, 14 (4),1837-1852,
http://dx.doi.org/10.5194/acpd-13-23139-2013
Petelski T., 2003, Marine aerosol fluxes over open sea calculated from vertical concentration
gradients,J. AerosolSci.,34,359-371,
http://dx.doi.org/10.1016/S0021-8502(02)00189-1
Petelski T., 2005, Coarse aerosol concentration over the North Polar Watersof the
Atlantic, J.AerosolSci. Tech.,39 (8),695-700,
http://dx.doi.org/10.1080/02786820500182362
PetelskiT.,PiskozubJ.,Paplińska-Swerpel B.,2005,Seasprayemission from
thesurfaceoftheopenBalticSea,J. Geophys.Res.,110,C10023,
http://dx.doi.org/10.1029/2004JC002800
PetelskiT.,PiskozubJ., 2006, Verticalcoarseaerosolfluxesinthe atmospheric surface
layer over the North PolarWatersof the Atlantic,J. Geophys.Res., 111, C06039,
http://dx.doi.org/10.1029/2005JC003295
Rosen M. J., Kunjappu J. T.,2012, Surfactantsand interfacialphenomena, John
Wiley & Sons, 235-266,
http://dx.doi.org/10.1002/9781118228920.ch5
SmithM. H.,ParkP. M.,Consterdine I. E.,1993, Marineaerosolconcentrations and
estimated fluxes over the sea, Q. J. R. Meteorol. Soc., 119 (512), 809-824,
http://dx.doi.org/10.1002/qj.49711951211
SchwarzJ. N.,KowalczukP.,KaczmarekS.,CotaG. F.,MitchellB. G.,Kahru M., Raine
R., 2002, Twomodels for absorption by coloured dissolvedorganic matter (CDOM), Oceanologia 44
(2), 209-241.
SellegriK., O'DowdC. D., YoonY. J.,Jennings S. G., deLeeuwG., 2006,
Surfactants andsubmicron seaspraygeneration,J.Geophys. Res., 111, D22215,
http://dx.doi.org/10.1029/2005JD006658
TsigaridisK., Koch D., Menon S., 2013, Uncertaintiesand importance of sea spray compositionon
aerosol directand indirecteffects,J. Geophys.Res. Atmos.,
118 (1), 220-235,
http://dx.doi.org/10.1029/2012JD018165
Van der Hoven J., 1957, Power spectrum of horizontal wind speed in the frequency rangefrom
0.0007to900cyclesperhour,J. Meteorol., 14 (2),160-164,
http://dx.doi.org/10.1175/1520-0469(1957)014<0160:PSOHWS>2.0.CO;2
VeronF., HopkinsC., Harrison E. L.,MuellerJ. A.,2012,Seasprayspume droplet
production in high wind speeds, Geophys. Res. Lett., 39, L16602,
http://dx.doi.org/10.1029/2012GL052603
VignatiE.,Facchini M. C.,Rinaldi M.,ScannellC.,Ceburnis D.,SciareJ.,
KanakidouM., Myriokefalitakis S., Dentener F., O'Dowd C. D., 2010, Global scale
emission and distribution of sea-spray aerosol:Sea-salt organic enrichment, Atmos. Environ.,44, 670-677,
http://dx.doi.org/10.1016/j.atmosenv.2009.11.013
WesterveltD. M.,Moore R. H.,NenesA.,AdamsP. J.,2012, Effectofprimary organicsea
sprayemissions oncloudcondensation nucleiconcentrations, Atmos. Chem.Phys.,12, 89-101,
http://dx.doi.org/10.5194/acp-12-89-2012
Zdun A., Rozwadowska A., Kratzer S., 2011, Seasonal variability in the optical properties of Baltic
aerosols, Oceanologia,53 (1), 7-34,
http://dx.doi.org/10.5697/oc.53-1.007
Zieliński T.,2004, Studiesof aerosol physicalpropertiesincoastal areas, Aerosol
Sci.Tech., 38 (5), 513-524,
http://dx.doi.org/10.1080/02786820490466738
ZielińskiT.,ZielińskiA.,2002,Aerosol extinctionandopticalthicknessinthe
atmosphere over the BalticSeadetermined with lidar, J. Aerosol Sci., 33 (6), 47-61,
http://dx.doi.org/10.1016/S0021-8502(02)00043-5
Nutrient turnover at the hypoxic boundary: flux measurements and model representation for the bottom water environment of the Gulf of Riga, Baltic Sea
Oceanologia 2014, 56(4), 711-735
http://dx.doi.org/10.5697/oc.56-4.711
Elvita Eglite1,3,
Aigars Lavrinovič1,*,
Bärbel Müller-Karulis1,2,
Juris Aigars1,
Rita Poikane1
1Latvian Institute of Aquatic Ecology,
8 Daugavgrivas St., LV–1048, Riga, Latvia;
e-mail: aigars.lavrinovics@lhei.lv
*corresponding author
e-mail: juris.aigars@lhei.lv
e-mail: rita.poikane@lhei.lv
2Baltic Nest Institute, Baltic Sea Centre, Stockholm University,
SE–106 91, Stockholm, Sweden;
e-mail: barbel.muller-karulis@stockholmresilience.su.se
3Leibniz Institute for Baltic Sea Research,
Warnemünde, Seestrasse 15, D–18119 Rostock, Germany;
e-mail: elvita.eglite@io-warnemuende.de
keywords:
Sediment-water nutrient fluxes, denitrification, biogeochemical model, hypoxia
Received 5 March 2014, revised 20 May 2014, accepted 27 May 2014.
The study was supported by the ERAF project `Development of a mechanistic model of the Gulf of Riga ecosystem in support of an efficient national policy to ensure the protection of the Baltic Sea and to promote the sustainable use of its ecosystem' (Ref. Nr. 2010/0287/2DP/2.1.1.1.0/10/APIA/VIAA/040) and the state research programme "Impact of climate change on Latvia's water environment - KALME".
Abstract
Experimental studies of intact sediment cores from the Gulf of Riga, Baltic Sea, were conducted to estimate the response of sediment nutrient fluxes to various near-bottom water oxygen conditions. The experiment was performed in the laboratory using a batch-mode assay type system on the sediment cores held at 4°C and oxygen concentrations maintained at 1, 2, 3, 4 and 5 mg l-1.The results from the experiment were subsequently used to optimise the fit of the sediment denitrification sub-model of the Gulf of Riga basin. Sediment-water fluxes of phosphate were low and directed out of the sediments under all treatments, demonstrating a general decreasing tendency with increasing near-bottom water oxygen concentration. The sediment-water fluxes of ammonium and nitrate+nitrite demonstrated opposing trends: ammonium fluxes decreased whereas nitrate+nitrite fluxes increased with rising near-bottom water oxygen concentration. The modelled fluxes agreed well with the measured ones, with correlation coefficients of 0.75, 0.63 and 0.88 for ammonium, nitrate+nitrite and phosphate fluxes respectively. The denitrification rate in sediments was simulated at oxygen concentrations from -2 to 10 mg l-1. At oxygen concentrations <2 mg l-1the modelled denitrification was sustained by nitrate transport from water overlying the sediments. With increasing oxygen concentrations the simulated denitrification switched from the process fuelled by nitrates originating from the overlying water (Dw) to one sustained by nitrates originating from the coupled sedimentary nitrification – denitrification (Dn). Dn reached its maximum at an oxygen concentration of 5 mg l-1.
References
Berzinsh V., 1980, Interannual and seasonal changes of water salinityin the Gulf
of Riga, Rybohhozyaistvennye issledovanya,(BaltNIIRKH), Riga,Avots15, 3-12, (in Russian).
Blomqvist S., Abrahamsson B., 1985, An improved Kajak-typegravity core sampler for soft bottom
sediments, Swiss J. Hydrology, 47 (1), 81-84,
http://dx.doi.org/10.1007/BF02538187
Carman R.,WulffF.,1989, AdsorptioncapacityofphosphorusinBalticSea sediments,
Estuar.Coast.ShelfSci.,29 (5),447-456,
http://dx.doi.org/10.1016/0272-7714(89)90079-6
Carman R.,Aigars J., Larsen B., 1996, Carbonand nutrient geochemistryof the surface sediments
of the Gulf of Riga,BalticSea, Mar.Geol., 134 (1),57-76,
http://dx.doi.org/10.1016/0025-3227(96)00033-3
Carstensen J., Andersen J. H., Gustafsson B. G., Conley D. J., 2014, Deoxygenation of theBaltic
Seaduringthelast century, PNAS,111 (15),5628-5633,
http://dx.doi.org/10.1073/pnas.1323156111
ColeJ. A., Brown C. M., 1980, Nitritereductiontoammonium by fermentative bacteria: a
shortcircuitinthebiological nitrogencycle, FEMS Microbiol. Lett., 7 (2),65-72,
http://dx.doi.org/10.1111/j.1574-6941.1980.tb01578.x
Conley D. J., Carstensen J., Aerteb jerg G., Christensen P. B., Dalsgaard T., Hansen J. L. S.,
JosefsonA. B., 2007, Long-termchangesandimpactsof hypoxiain Danishcoastalwaters,
Ecol.Appl., 17, 165-184,
http://dx.doi.org/10.1890/05-0766.1
Conley D.,Humborg C., RahmL., SavchukO., WulffF., 2002, Hypoxiainthe BalticSeaand
basin-scalechangesinphosphorusbiogeochemistry,Environ. Sci. Technol.,36 (24),5315-5320,
http://dx.doi.org/10.1021/es025763w
Conley D. J., Johnstone R. W., 1995, Biogeochemistry of N, P and Si in Baltic Sea sediments:
responseto a simulateddepositionof a spring diatombloom,Mar. Ecol.-Prog. Ser., 122, 265-276,
http://dx.doi.org/10.3354/meps122265
ConleyD. J., CarstensenJ., Aigars J., AxeP., Bonsdorff E., Eremina T., Haahti B. M., Humborg
C., Jonsson P., KottaJ., Lännegren C., Larsson U., Maximov A., MedinaM. R.,
Łysiak-PastuszakE.,Remeikaite-NikieneN.,WalveJ., Wilhelms S., Zillen L., 2011, Hypoxia is
increasingin the coastal zone of the BalticSea, Environ.Sci. Technol.,45 (16),6777-6783,
http://dx.doi.org/10.1021/es201212r
DalsgaardT.,NielsenL. P.,Brotas V.,Viaroli P.,UnderwoodG.,Nedwell D.,
Sunbäck K.,RysgaardS.,MilesA.,BartoliM.,DongL.,Thornton D. C. O., Ottosen L.
D. M., Castaldelli G., Risgaard-Petersen N., 2011, Protocol handbookforNICE -nitrogen
cyclinginestuaries:aprojectunderthe EU research programme:marinescience and
technology (MAST III), Nat. Environ. Res. Inst., Silkeborg, Denmark, 43 pp.
Dalsgaard T., De Brabandere L., HallP. O. J., 2013, Denitrification in the water columnof the
centralBalticSea, Geochim.Cosmochim.Acta., 106, 247-260,
http://dx.doi.org/10.1016/j.gca.2012.12.038
DeutschB.,ForsterS.,WilhelmM.,DippnerJ. W., 2010,Denitrificationin sedimentsas a
majornitrogensink in the BalticSea:an extrapolationusing sedimentcharacteristics,
Biogeosciences, 7 (10), 3259-3271,
http://dx.doi.org/10.5194/bg-7-3259-2010
Diaz R. J., Rosenberg R., 2008, Spreading dead zones and consequencesfor marine ecosystems,
Science,321 (5891),926-929,
http://dx.doi.org/10.1126/science.1156401
Eilola K.,MeierH. E. M.,Almroth E.,2009,On thedynamics ofoxygen, phosphorus
andcyanobacteriaintheBalticSea;Amodelstudy,J. Marine Syst., 75 (1-2), 163-184.
FennelK.,BradyD.,DiToro D., FulweilerR. W.,GardnerW. S.,Giblin A., McCarthy
M. J., RaoA., Seitzinger S., Thouvenot-KorppooM.,Graig T.,
2008, Modelingdenitrification inaquaticsediments, Biogeochemistry,93 (1-2), 159-178,
http://dx.doi.org/10.1007/s10533-008-9270-z
Fonselius S., 1969, Hydrographyof the BalticDeep BasinsIII, Fish.BdSweden, Ser.
Hydrography, Rep.23, 97 pp.
Graham L. P., Deliang C., Christensen O. B.,Kjellström E., Krysanova V., Markus Meier H. E.,
Radziejewski M.,RäisánenJ., Rockel B., Ruosteeno ja K., 2008, Projectionsof future
anthropogenicclimate change, [in:] Assessment of climate changesfortheBaltic Seabasin,
H.-J.Bolle, M.Menenti& I.Rasool (eds.), Springer-Verlag,Berlin, Heidelberg,
133-219,
http://dx.doi.org/10.1007/978-3-540-72786-6_3
Grasshoff K., Ehrhardt M., Kremling K., 1983, Methodsof seawater analysis,2nd edn., Verlag
Chemie, Weinheim, 419 pp.
GunnarsA., BlomqvistS., 1997, Phosphateexchangeacrossthesediment-water interface
whenshiftingfromanoxictooxicconditions -anexperimental comparisonof freshwater
and brackish-marinesystems,Biogeochemistry,37, 203-226,
http://dx.doi.org/10.1023/A:1005744610602
Hansson M., Andersson L., AxeP., 2011, Arealextent and volume of anoxia and hypoxia inthe
BalticSea,1960-2011,SMHIRep.Oceanogr.No.42, 63 pp.
HELCOM, 2010, EcosystemHealth of the Baltic Sea 2003-2007, Balt. Sea Environ.
Proc. No. 122, 17 pp.
HELCOM, 2013, Review of the Fifth Baltic Sea PollutionLoad Compilationfor the
2013 HELCOM MinisterialMeeting,Balt. Sea Environ. Proc. No.141
Henriksen K., KempM. W., 1988, Nitrificationinestuarineandcoastalmarine sediments,
[in:]Nitrogencyclingincoastalmarineenvironments T. H. Blackburn & J. Sorensen
(eds.), John Wiley & Sons, Chichester, 451 pp.
HietanenS.,KuparinenJ., 2008,Seasonalandshort-termvariationin denitrificationand
anammoxatacoastalstationontheGulfofFinland, Baltic Sea,Hydrobiologia,596 (1), 67-77,
http://dx.doi.org/10.1007/s10750-007-9058-5
Hietanen S.,Jäntti H.,Buizert C., Jürgens K., Labrenz M.,Voss M., Kuparinen J.,
2012, Hypoxia and nitrogen processing in the Baltic Sea water column, Limnol. Oceanogr., 57 (1),
325-337.
Ingall E. D., Jahnke R., 1994, Evidencefor enhanced phosphorus regeneration from marine
sedimentsoverlainby oxygen depleted waters,Geochim.Cosmochim. Acta,58 (11), 2571-2575,
http://dx.doi.org/10.1016/0016-7037(94)90033-7
Ingall E. D., JahnkeR., 1997, Influenceof water-column anoxia on the elemental fractionationof
carbonandphosphorusduringsedimentdiagenesis,Marine Geol., 139 (1-4), 219-229.
Jäntti H., Hietanen S.,2012,The effects of hypoxia on sediment nitrogen
cycling in the BalticSea,Ambio,41 (2),161-169,
http://dx.doi.org/10.1007/s13280-011-0233-6
Jenkins M. C., Kemp W. M., 1984, Thecoupling of nitrificationand denitrification in two estuarine
sediments, Limnol. Oceanogr., 29 (3), 609-619,
http://dx.doi.org/10.4319/lo.1984.29.3.0609
JensenM. K.,LomsteinE.,Sorensen J., 1990, Benthic NH4+ andNO3- flux following
sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark,Mar.Ecol.-Prog.Ser.,
61 (1-2),87-96,
http://dx.doi.org/10.3354/meps061087
JensenH. S.,Mortensen P. B., Andersen F. O., Rasmussen E., JensenA., 1995, Phosphorus
cyclinginacoastalmarinesediment, Aarhus Bay, Denmark, Limnol.Oceanogr.,40 (5), 908-917,
http://dx.doi.org/10.4319/lo.1995.40.5.0908
Kemp W. M.,Sampou P.,Caffrey J.,Mayer M.,HenriksenK.,Boynton W. R.,1990,
Ammonium recyclingversusdenitrificationinChesapeakeBay sediments,Limnol.Oceanogr.,
35 (7),1545-1563,
http://dx.doi.org/10.4319/lo.1990.35.7.1545
KiirikkiA., LehtorantaJ., InkalaA., PitkänenH.,HietanenS,HallP. O. G., Tenberg
A., Koponen J., Sarkkula J., 2006, Asimple sediment process descriptionsuitable for
3D-ecosystem modelling-Developmentandtesting in the Gulf of Finland, J. Marine Syst., 61 (1-2), 55-66,
http://dx.doi.org/10.1016/j.jmarsys.2006.02.008
Koop K., Boynton W. R., Wulff F.,Carman R.,1990, Sediment-water oxygen and nutrient exchanges
along a depth gradient in the BalticSea,Mar.Ecol.-Prog. Ser., 63, 65-77,
http://dx.doi.org/10.3354/meps063065
KristensenE., 2000, Organicmatterdiagenesisattheoxic/anoxic interfacein coastal
marine sediments, with emphasis on the role of burrowing animals, Hydrobiologia, 426 (1),1-24,
http://dx.doi.org/10.1023/A:1003980226194
McCarthy M. J.,McNeal K. S.,MorseJ. W., Gardner W. S.,2008,Bottom- water hypoxia
effects on sediment-water interface nitrogen transformationsin a seasonallyhypoxic,shallow bay
(Corpus ChristiBay, TX,USA), Estuar. Coasts, 31 (3),521-531,
http://dx.doi.org/10.1007/s12237-008-9041-z
MeierH. E. M.,Müller-Karulis B.,AnderssonH. C., DieterichC.,Eilola K.,
Gustafsson B. G., Höglund A.,Hordoir R.,Kuznetsov I., Neumann T., Ranjbar Z., Savchuk O. P.,
Schimanke S., 2012, Impact of climate change on ecological qualityindicators and
biogeochemicalfluxesin theBaltic Sea:A multi- modelensemblestudy, Ambio, 41
(6), 558-573,
http://dx.doi.org/10.1007/s13280-012-0320-3
MortH. P.,SlompC. P.,Gustafsson B. G.,AndersenT. J.,2010, Phosphorus recycling and
burial in BalticSea sediments with contrasting redox conditions, Geochim.Cosmochim.Acta, 74
(4),1350-1362,
http://dx.doi.org/10.1016/j.gca.2009.11.016
Müller-KarulisB., Aigars J., 2011, Modelingthe long-term dynamicsof nutrients and
phytoplankton intheGulf ofRiga,J. MarineSyst., 87 (3-4),161-176,
http://dx.doi.org/10.1016/j.jmarsys.2011.03.006
Nielsen L. P.,1992, Denitrificationinsedimentdeterminedfromisotope
pairing,FEMS Microbiol.Ecol.,9 (4),357-362,
http://dx.doi.org/10.1111/j.1574-6968.1992.tb04828.x
NixonS. W.,Granger S. L.,Nowicki B. L.,1995, An assessmentoftheannual mass balance
of carbon, nitrogen and phosphorus in Narragansett Bay, Biogeochemistry, 35, 15-61.
OjaveerE.(ed.),1995, Ecosystem oftheGulf ofRigabetween 1920 and1990, Estonian
Acad. Sci.,Tallinn,277 pp.
Omstedt A., Axell L. B., 2003, Modelling the variations of salinity and temperature inthelarge
Gulfs oftheBalticSea, Cont.ShelfRes.,23,265-294,
http://dx.doi.org/10.1016/S0278-4343(02)00207-8
Rahm L.,Danielsson Å., 2001, Statistical analysis of spatial and temporal variations in the
BalticSea, [in:] Asystem analysis of the BalticSea, F. Wulff, L. Rahm
& P. Larsson (eds.),Ecol. Ser. 148, Springer-Verlag, Berlin,329-351.
Reigstad M., Heiskanen S.
A., Wassmann P., 1999, Seasonaland spatial variation
ofsuspendedandsedimentednutrients(C, N,P)inthepelagicsystemof
theGulfofRiga,J. MarineSyst.,23, 211-232,
http://dx.doi.org/10.1016/S0924-7963(99)00059-7
Rütting T., Boeckx P., Müller C., Klemedtsson L., 2011, Assessment of the importanceof
dissimilatorynitratereductionto ammonium for the terrestrial nitrogen cycle,
Biogeosciences,8,1779-1791,
http://dx.doi.org/10.5194/bg-8-1779-2011
Savchuk O. P., 2002, Nutrient biogeochemichalcycles inthe Gulf of Riga:scaling up field
studieswith a mathematical model, J. Marine Syst., 32, 253-280,
http://dx.doi.org/10.1016/S0924-7963(02)00039-8
Savchuk O. P., Wulff F., 2009, Long-termmodeling of large-scale nutrient cycles in the entire
BalticSea, Hydrobiologia, 629 (1),209-224,
http://dx.doi.org/10.1007/s10750-009-9775-z
StÅlnacke P., Grimvall A., Sundblad K., Tonderski A., 1999, Estimation of riverine loadsof
nitrogen andphosphorustotheBalticSea,1970-1993, Environ. Monitor.Assess.,58, 173-200,
http://dx.doi.org/10.1023/A:1006073015871
StockenbergA.,JohnstoneR. W.,1997, Benthic denitrificationintheGulfof Bothnia,
Estuar. Coast. Shelf Sci., 45 (6), 835-843,
http://dx.doi.org/10.1006/ecss.1997.0271
TamminenT.,Seppálä J., 1999,Nutrientpools,transformations,ratios, and
limitation in the Gulf of Riga,the BalticSea, during four successionalstages, J. Marine
Syst., 23 (1-3),83-106,
http://dx.doi.org/10.1016/S0924-7963(99)00052-4
Tuominen L.,Heinánen A., Kuparinen J., Nielsen L. P., 1998, Spatial and temporal variabilityof
denitrification inthesedimentsof thenorthernBalticProper, Mar.Ecol.-Prog. Ser., 172, 13-24,
http://dx.doi.org/10.3354/meps172013
Vanderborght J. P., BillenG., 1975, Verticaldistributionof nitrateconcentration in
interstitial water of marinesedimentswith nitrification and denitrification, Limnol. Oceanogr., 20, 953-961,
http://dx.doi.org/10.4319/lo.1975.20.6.0953
VanderborghtJ. P., WollastR., BillenG., 1977, Kineticmodelsof diagenesisin disturbed
sediments. Part 2. Nitrogendiagenesis,Limnol. Oceanogr., 22, 794-803,
http://dx.doi.org/10.4319/lo.1977.22.5.0787
Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003, Nitrogenand phosphorus
budgets of the Gulf of Gdańsk(BalticSea), Estuar. Coast. Shelf Sci., 57(1-2), 239-248,
http://dx.doi.org/10.1016/S0272-7714(02)00348-7
YurkovskisA., WulffF., RahmL., Andrushaitis A., Rodrigues-Medina M., 1993,
Anutrientbudget of the Gulfof Riga,BalticSea, Estuar.Coast.Shelf Sci.,
37 (2),113-127,
http://dx.doi.org/10.1006/ecss.1993.1046
ZillénL.,Conley D. J., AndrénT., AndrénE.,BjörckS., 2008, Pastoccurrences of
hypoxia in the BalticSea and the role of climatevariability,environmental changeandhuman
impact,Earth-Sci.Rev.,91 (1-4),77-92,
http://dx.doi.org/10.1016/j.earscirev.2008.10.001
Regional algorithms for the estimation of chlorophyll and suspended matter concentration in the Gulf of Finland from MODIS-Aqua satellite data
Oceanologia 2014, 56(4), 737-756
http://dx.doi.org/10.5697/oc.56-4.737
Svetlana Vazyulya1,2,
Alexander Khrapko1,2,
Oleg Kopelevich1,2,*,
Vladimir Burenkov1,2,
Tatyana Eremina2,
Alexey Isaev2
1P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (SIO RAS),
36 Nakhimovsky prospect, 117997 Moscow, Russia;
e-mail: oleg@ocean.ru
*corresponding author
2Russian State Hydrometeorological University (RSHU),
98 Malookhtinsky prospect, 195196 St. Petersburg, Russia
keywords:
Gulf of Finland, satellite data, algorithms, chlorophyll, suspended matter
Received 10 January 2014, revised 21 May 2014, accepted 23 May 2014.
This work was funded by the Russian Government (grant No. 11.G34.31.0078)for research under the supervision of the leading scientist at the Russian State Hydrometeorological University.
Abstract
Validation of algorithms for the retrieval of concentrations of chlorophyll (Chl)and total suspended matter (TSM) in the Gulf of Finland from satellite oceancolour data was carried out using field measurement data from summer 2012 and2013. These data included spectral values of the remote sensing reflectance Rrs(λ),Chl and TSM concentrations. Testing of the existing algorithms (OC4v4, OC3M, and the Baltic regional algorithms developed by Polish specialists) showed that all of them overestimated Chl several times. The new regional algorithms were developed on the basis of measured values of Rrs(λ), Chl and TSM (40 stations in total). Direct comparison of Chl and TSM values, obtained from MODIS-Aqua data with the algorithms developed here, with their in situ values showed reasonable agreement. The spatial distributions of Chl and TSM concentrations were constructed from MODIS-Aqua data. Errors of the atmospheric correction were analysed.
References
ArtemievV. A., BurenkovV. I., Vortman M. I., Grigoriev A. V., Kopelevich O. V.,
KhrapkoA. N., 2000, Sea-truthmeasurementsof ocean color:a new floating spectroradiometer and
its metrology, Oceanology, 40, 139-145, (translated from Okeanologiya,40, 148-155).
BaileyS. W., Werdell P. J.,2006,A multi-sensor approachfor theon-orbit
validation of ocean color satellite data products, Remote Sens. Environ.,102 (1-2), 12-23,
http://dx.doi.org/10.1016/j.rse.2006.01.015
BurenkovV. I.,ErshovaS. V.,KopelevichO. V.,Sheberstov S. V.,Shevchenko V. P.,
2001,An estimateofthedistribution ofsuspendedmatterin the BarentsSea waters
on the basis of the SeaWiFS satellite ocean color scanner, Oceanology, 41 (5), 622-628, (translated
from Okeanologiya, 2001, 41 (5), 653-659).
DareckiM., FicekD.,Krężel A., OstrowskaM., MajchrowskiR.,WoźniakS. B., Bradtke K.,
Dera J., Woźniak B., 2008, Algorithm for the remote sensing of the Balticecosystem(DESAMBEM).
Part2:Empiricalvalidation, Oceanologia, 50 (4), 509-538.
DareckiM.,StramskiD.,2004,An evaluationofMODISandSeaWiFSbio- optical
algorithms inthe BalticSea, RemoteSens. Environ.,89 (3), 326-350,
http://dx.doi.org/10.1016/j.rse.2003.10.012
FeldmanG. C., 2013, Oceancolor web, http://oceancolor.gsfc.nasa.gov.
KopelevichO. V., SheberstovS. V., SahlingI. V., VazyulyaS. V., BurenkovV. I.,
2013, Bio-opticalcharacteristicsofthe Barents,White, Black,and Caspian
Seas from data of satellite ocean color scanners, http://optics.ocean.ru.
Lee Z., CarderK. L., Mobley C. D., Steward R. G., Patch J. S., 1998, Hyperspectral remote
sensingforshallow waters.1.Asemianalyticalmodel,Appl.Opt., 37 (27), 6329-6338,
http://dx.doi.org/10.1364/AO.37.006329
PNDF, 2012, Quantitativechemical analysis of water.Themethod for measuring suspended solids
and total amount of the admixture of natural and treated wastewater bygravimetricmethod,
14.1:2.110-97,Media-Service, Moscow, 11 pp., (in Russian).
Reinart A., Kutser T., 2006, Comparisonof different satellite sensorsin detecting cyanobacterial
bloom events in the BalticSea, RemoteSens. Environ.,102 (1-2), 74-85,
http://dx.doi.org/10.1016/j.rse.2006.02.013
Report of SCOR-UNESCO working group 17 on determination of photosynthetic pigments, 1966,
Determination of photosynthetic pigments in sea-water, UNESCO,Paris,9-16.
Woźniak B.,KrężelA.,DareckiM.,2008,Algorithm fortheremotesensing of the
Baltic ecosystem (DESAMBEM). Part 1:Mathematical apparatus, Oceanologia, 50 (4), 451-508.
ZibordiG.,HolbenB.,SlutskerI.,2009, Anetwork forthe validationofocean color
primaryproducts,J. Atmos.Ocean.Tech., 26 (8),1634-1651,
http://dx.doi.org/10.1175/2009JTECHO654.1
Annual phytoplankton dynamics in the Gulf Saint Vincent, South Australia, in 2011
Oceanologia 2014, 56(4), 757-778
http://dx.doi.org/10.5697/oc.56-4.757
Sophie C. Leterme1,*,
Jan-Georg Jendyk1,
Amanda V. Ellis2,
Melissa H. Brown1,
Tim Kildea3
1School of Biological Sciences, Flinders University,
GPO Box 2100, Adelaide 5001, Australia;
e-mail: sophie.leterme@flinders.edu.au
*corresponding author
2Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University,
GPO Box 2100, Adelaide 5001, Australia
3South Australian Water Corporation,
250 Victoria Square, Adelaide 5000, Australia
keywords:
Phytoplankton, dinoflagellates, diatoms, Australia, salinity, nutrients, annual cycle
Received 28 November2013, revised 25 March 2014, accepted 31 March 2014.
Abstract
Phytoplankton communities are the basis of many marine and freshwater foodwebs. Their composition fluctuates depending on hydrochemical conditions, such as light, temperature, salinity, pH, nutrients and turbulence. This study investigates the effect of changing environmental conditions on the coastal phytoplanktoncommunity of the Gulf St Vincent in South Australia. This is the first study simultaneously investigating the phytoplankton communities and their environment in this area and is essential to set up the baseline of future studies. In total, 179 phytoplankton species were identified and enumerated between January and December 2011. Phytoplankton communities were numerically dominated by chlorophytes during 6 months of the survey and an intense bloom (representing 62% of the overall phytoplankton community) of the diatom Cylindrotheca closterium was observed in February. Our results suggest that in the coastal waters of the Gulf St Vincent, the variability in environmental conditions is driven by temperature, wind speed/direction and the changing levels of phosphorus. However, the variabilityobserved during autumn and winter months seems to be driven by changing levels of nitrogen and silica. In this shallow environment, the wind speed is proportional to the stress at the ocean floor and should directly influence the resuspension of sediment and associated nutrients. Nutrient ratios were observed to investigate potential phytoplankton nutrient limitation patterns. These ratios indicated that nitrogen was usually the limiting nutrient, which is typical of marine systems.Since nutrient enrichment is generally the main factor driving the succession and composition of phytoplankton communities in coastal waters, further work is now needed to identify the sources of nutrients in this region where river runoff is limited and evaporation is high relative to precipitation.
References
AnsoteguiA.,SarobeA.,TriguerosJ. M.,Urrutxurtu I.,OriveE.,2003,Size
distribution of algal pigments and phytoplankton assemblages in a coastal- estuarineenvironment:
contributionofsmalleukaryoticalgae, J. Plankton Res., 25 (4), 341-355,
http://dx.doi.org/10.1093/plankt/25.4.341
Balch W. M., Holligan P. M., Ackleson S. G., Voss K. J., 1991, Biological and optical properties of
mesoscale coccolithophore blooms in the Gulfof Maine, Limnol. Oceanogr.,36 (4), 629-643,
http://dx.doi.org/10.4319/lo.1991.36.4.0629
Barnett E. J., Harvey N., Belperio A. P., BourmanR. P., 1997, Sea-level indicators from a
Holocene,tide-dominated coastal succession,Port Pirie, South Australia, T. Roy.
Soc. South Aust.,121, 125-135.
Brzezinski M. A., 1985, The Si:C:N ratio of marine diatoms:interspecific variability and the effect
ofsomeenvironmentalvariables, J. Phycol.,21 (3),347-357,
http://dx.doi.org/10.1111/j.0022-3646.1985.00347.x
ByeJ. A., KämpfJ., 2008, Physicaloceanography,[in:]Natural historyofGSV, S. A.
Shepherd,S. Bryars,I. Kirkegaard,P. Harbison &J. T. Jennings,Roy. Soc. South Austr.
Inc., Adelaide,56-70.
CarterC. M., RossA. H., SchielD. R.,Howard-WilliamsC., HaydenB., 2005, In situ
microcosm experiments on the influence of nitrate and light on phytoplanktoncommunity
composition, J. Exp. Mar. Biol. Ecol., 326 (1), 1-13,
http://dx.doi.org/10.1016/j.jembe.2005.05.006
Cloern J. E., 1996, Phytoplankton bloom dynamicsin coastal ecosystems:a review withsome
generallessons fromsustained investigation ofSan Francisco Bay, California,Rev.
Geophys.,43 (2),127-168,
http://dx.doi.org/10.1029/96RG00986
DonnellyA., JonesM., O'Mahony T., ByrneG., 2007, Selectingenvironmental indicator for
useinstrategicenvironmentalassessment, Environ. Impact Asses., 27 (2), 161-175,
http://dx.doi.org/10.1016/j.eiar.2006.10.006
DortchQ., WhitledgeT. E., 1992, Doesnitrogenorsiliconlimitphytoplankton production
inthe MississippiRiverplume and nearby regions?,Cont. Shelf Res.,12 (11), 1293-1309,
http://dx.doi.org/10.1016/0278-4343(92)90065-R
Elser J. J., Bracken M. E. S., Cleland E. E., Grune D. S.,Harpole W. S.,Hillebrand H., Ngai J.
T., Seabloom E. W., Shurin J. B., Smith J. E., 2007, Global analysis ofnitrogenandphosphorus
limitationofprimaryproducersinfreshwater, marine and terrestrial ecosystems,Ecol.
Lett., 10 (12),1135-1142,
http://dx.doi.org/10.1111/j.1461-0248.2007.01113.x
FurnasM. J., 1990, Insitugrowth rates ofmarinephytoplankton:approaches to measurement,
communityand speciesgrowth rates,J. PlanktonRes., 12 (6), 1117-1151,
http://dx.doi.org/10.1093/plankt/12.6.1117
HajduS., HöglanderH.,Larsson U., 2007, Phytoplanktonverticaldistributions and
compositioninBalticSeacyanobacterialblooms,HarmfulAlgae,6 (2), 189-205,
http://dx.doi.org/10.1016/j.hal.2006.07.006
Hallegraef G. M., BolchC. J. S., HillD. R. A., JamesonI., Leroi J. M., McMinn A.,
MurrayS.,deSalasM. F.,Saunders K. M., 2010, AlgaeofAustralia: phytoplankton of
temperate coastal waters,CSIRO Publ.,Melbourne, 432 pp.
Hansen H., Koroleff F., 2007, Determinationof nutrients, [in:] Methods of seawater analysis, K.
Grasshoff, K. Kremling & M.Ehrhardt (eds.), Wiley-VCH Verlag GmbH, Weinheim,41-73,
http://dx.doi.org/10.1002/9783527613984.ch10
HarrisG. P.,1986, Phytoplanktonecology: structure, functionandfluctuation, Chapman
&Hall, NewYork,384 pp.,
http://dx.doi.org/10.1007/978-94-009-4081-9
Hecky R. E., KilhamP., 1988, Nutrientlimitationof phytoplankton infreshwater and marine
environments: A review of recent evidence on the effects of enrichments,Limnol.Oceanogr.,33
(4,Pt. 2),796-822,
http://dx.doi.org/10.4319/lo.1988.33.4_part_2.0796
Huertas I. E., RoucoM., López-RodasV.,Costas E.,2011, Warmingwill affect phytoplankton
differently:evidence through a mechanistic approach, Proc. Roy. Soc. B:Biol. Sci.,
http://dx.doi.org/10.1098/rspb.2011.0160
Jennings J. C., GordinL. I.,NelsonD. M.,1984,Nutrient depletionindicates
highprimaryproductivityintheWeddellSea, Nature, 309 (51-54),51-54,
http://dx.doi.org/10.1038/309051a0
Ji R.,Chen C., Franks P. J. S.,TownsendD. W.,Durbin E. G.,Beardsley R. C.,
LoughR. G., Houghton R. W., 2006, Springphytoplankton bloom and associatedlowertrophic
levelfoodwebdynamics onGeorges Bank:1-D and2-Dmodelstudies,Deep-SeaRes.
Pt. II, 53 (23-24),2656-2683,
http://dx.doi.org/10.1016/j.dsr2.2006.08.008
Justic, D.,RabalaisN. N.,TurnerR. E.,1995, Stoichiometric nutrientbalance and origin
ofcoastal eutrophication,Mar.Pollut.Bull., 30 (1),41-46,
http://dx.doi.org/10.1016/0025-326X(94)00105-I
Kingston M. B., 2009, Growth and motility of the diatom Cylindrothecaclosterium:
implicationsforcommercialapplications,J. NorthCarolina Acad. Sci.,125, 138-142.
LagusA., Suomela J., WeithoffG., HeikkilaK., Helminen H., SipuraJ., 2004, Species-specific
differences in phytoplankton responses to N and P enrichments and the N:P ratiointhe
ArchipelagoSea,northernBalticSea,J. Plankton Res., 26 (7),779-798,
http://dx.doi.org/10.1093/plankt/fbh070
Legendre L., Demers S., 1984, Towards dynamicbiological oceanography and limnology,Can.. J.
Fish.Aquat. Sci.,41, 2-19,
http://dx.doi.org/10.1139/f84-001
Lessard E. J., Merico A., Tyrrell T., 2005, Nitrate:phosphate rations and Emiliania huxleyi
blooms,Limnol.Oceanogr.,50 (3),1020-1024,
http://dx.doi.org/10.4319/lo.2005.50.3.1020
Leterme S. C., Edwards M., Seuront L., AttrillM. J.,Reid P. C., John A. W.
G.,2005, Decadalbasin-scalechanges indiatoms,dinoflagellates,and phytoplankton colour
acrosstheNorthAtlantic,Limnol.Oceanogr.,50 (4), 1244-1253,
http://dx.doi.org/10.4319/lo.2005.50.4.1244
LetermeS. C.,Ellis A. V.,Mitchell J. G., Buscot M. J.,Pollet T.,Schapira M.,
Seuront L., 2010, Morphological flexibility of Cocconeis placentula (Bacillariophyceae)
nanostructure tochangingsalinity levels, J. Phycol., 46 (4),715-719,
http://dx.doi.org/10.1111/j.1529-8817.2010.00850.x
Leterme S. C., PrimeE., MitchellJ. G., Brown M. H., EllisA. V., 2013, Diatom adaptability to
environmentalchange:a casestudy of two Cocconeis species fromhigh salinityareas,Diatom Res.,
http://dx.doi.org/10.1080/0269249X.2012.734530
Leterme S. C., Seuront L., Edwards M., 2006, Differentialcontribution of diatoms and
dinoflagellates to phytoplankton biomassinthe NEAtlanticOceanand the North Sea,Mar.
Ecol.-Prog. Ser.,312, 57-65,
http://dx.doi.org/10.3354/meps312057
Li A.,StoeckerD. K.,CoatsD. W., 2000,Spatial and temporalaspects of
Gyrodiniumgalatheanum inChesapeakeBay:distributionandmixotrophy, J. PlanktonRes.,
22 (11),2105-2124,
http://dx.doi.org/10.1093/plankt/22.11.2105
Li A., StoeckerD. K.,CoatsD. W.,AdamE. J.,1996, Ingestionof fluorescently- labeled and
phycoerythrin-containingprey by photosynthetic dinoflagellates, Aquat. Microb. Ecol., 10 (2), 139-147,
http://dx.doi.org/10.3354/ame010139
Lips I., Lips U., 2010, Phytoplankton dynamicsaffected by coastal upwelling events inthe Gulf of
FinlandinJuly-August2006, J. PlanktonRes.,32 (9),1269-1282,
http://dx.doi.org/10.1093/plankt/fbq049
LoureyM. J.,TrullT. W.,2001,Seasonalnutrientdepletionandcarbonexport inthe
SubantarcticandPolarFrontalZonesoftheSouthernOcean, south of Australia, J.
Geophys.Res., 106 (C12), 31463-31488,
http://dx.doi.org/10.1029/2000JC000287
MargalefR.,1975, Assessment ofthe effectsonplankton, [in:]Marinepollution and marine
waste disposal, Proc. 2nd Int. Cong., San Remo, 17-21 December,
1973, E. A. Pearson & E. De Fra ja Frangipane (eds.), Pergamon Press, Oxford, New York, Toronto,
Sydney,Paris,Braunschweig,487 pp.
MiddletonJ. F.,Bye J. A. T.,2007, Areview ofthe shelf-slopecirculationalong
Australia's southernshelves: CapeLeeuwintoPortland,Prog.Oceanogr., 75 (1), 1-41,
http://dx.doi.org/10.1016/j.pocean.2007.07.001
Pattiaratchi C.,NewgardJ., Hollings B., 2006, Physicaloceanographic studiesof Adelaide
coastal waters using high resolutionmodelling,in-situobservations and satellite techniquest -
Sub Task 2 Final TechnicalReport, 20, ACWS Tech. Rep.
PIRSAReport,2013, Fishand dolphin mortalities in South Australia,75 pp. RedfieldA. C.,
KetchumB. H., RichardsF. A., 1963, Theinfluenceof organisms
on the compositionof sea water, [in:] Thesea, Interscience, New York, 26-77.
Rensel J. E., 1993, Severeblood hypoxia of Atlanticsalmon Salmosalar exposed to the marine
diatom Chaetoceros concavicornis, [in:] Toxicphytoplankton blooms in the sea, Proc.5th Int.
Conf. 'Toxic MarinePhytoplankton', Elsevier, New York, 625-630.
RiegmannR., StolteW., NoordeloosA.,SlezakD., 2000,Nutrient
uptake and alkaline phosphatase EC 3:1:3:1 activity of Emilianiahuxleyi (Prymnesiophyceae), J.
Phycology,36 (1),87-96,
http://dx.doi.org/10.1046/j.1529-8817.2000.99023.x
Rimet F., Bouchez A., 2012,Biomonitoring river diatoms: implications of
taxonomic resolution, Ecol. Indic.,15 (1), 92-99,
http://dx.doi.org/10.1016/j.ecolind.2011.09.014
RoundF. E.,1981,Theecologyofalgae,Cambridge Univ.Press, Cambridge, 653 pp.
SandersR. W.,Porter K. G.,1988, Phagotrophicphytoflagellates, Adv.Microb.
Ecol., 10, 167-192,
http://dx.doi.org/10.1007/978-1-4684-5409-3_5
Smayda T. J., 1990, Novel and nuisance phytoplanktonblooms in the sea: evidence
for a global epidemic, [in:] Toxicmarinephytoplankton, E. Granéli, B. Sunström, L. Edler &
D. M. Anderson(eds.),Elsevier Sci. Ltd.,New York, 554 pp.
Stoecker D. K., Li A., Coats D. W., GustafsonD., Nannen M. K., 1997, Mixotrophy in the
dinoflagellate Prorocentrum minimum, Mar. Ecol.-Prog. Ser., 152, 1-12.
SuikkanenS.,Laamanen M.,Huttunen M.,2007,Long-termchanges in phytoplanktoncommunities
of theopennorthernBalticSea,Estuar. Coast. Shelf Sci., 71 (3-4), 580-592,
http://dx.doi.org/10.1016/j.ecss.2006.09.004
TakedaS., 1998, Influence of iron availabilityon nutrient consumption of diatoms in the oceanicwater, Nature, 393, 774-777,
http://dx.doi.org/10.1038/31674
Tanaka I., 1984, Distributionof chlorophyll a at the frontalregionformedinthe water
adjacentto Funka Bay,Hokkaido, Bull. Japanese Soc. Fish. Oceanogr., 46, 9-17.
TomasC. R.,1997,Identifying marinephytoplankton, Acad.Press,SanDiego, 855 pp.
WelschmeyerN. A.,1994, Fluorometricanalysisof Chlorophyll-a inthe presence of
Chlorophyll-band pheopigments,Limnol.Oceanogr.,39, 1985-1992,
http://dx.doi.org/10.4319/lo.1994.39.8.1985
Zar J. H., 1999, Biostatistical analysis,Prentice-Hall, UpperSaddle River, 663 pp.
Gonad maturity in female Chinese mitten crab Eriocheir sinensis from the southern Baltic Sea - the first description of ovigerous females and the embryo developmental stage
Oceanologia 2014, 56(4), 779-787
http://dx.doi.org/10.5697/oc.56-4.779
Dagmara Wójcik*,
Monika Normant
Department of Experimental Ecology of Marine Organisms, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81–378 Gdynia, Poland;
e-mail: d.wojcik@ug.edu.pl
*corresponding author
keywords:
Eriocheir sinensis, Egg-carrying females, reproduction, Southern Baltic, non-native species
Received 28 October 2013, revised 6 February 2014, accepted 18 March 2014.
Abstract
This paper describes for the first time the gonad maturity stage of Eriocheir sinensisfemales (carapace width 55.20-78.10 mm) collected in the autumns and winters of 2005–2012 in the Gulf of Gdańsk and Vistula Lagoon (southern Baltic Sea).Seventeen females had gonads in the penultimate stage, which indicates that spawning would shortly take place. Four other females had gonads in the laststage, which means they were already carrying eggs. These accounted, on average, for 17.9± 2.9% of female weight and were in the 3rd and 4th embryo developmentalstage. The results show that the low salinity of southern Baltic Sea (≤7 PSU) permits mating and fertilization as well as embryo development in E. sinensis. Itis still not clear, whether such a salinity level will enable hatching and the complete larval cycle.
References
AngerK.,1991, Effectsof temperature and salinityonthe larval development of
the Chinese mitten crab Eriocheirsinensis(Decapoda:Grapsidae),Mar. Ecol.- Prog. Ser., 72, 103-110,
http://dx.doi.org/10.3354/meps072103
Cabral H., Costa M., 1999, Onthe occurrence of the Chinesemitten crab, Eriocheir sinensis,in
Portugal (Decapoda,Brachyura),Crustaceana, 72 (1), 56-58.
Cohen A., WeinsteinA., 2001, Thepotential distribution of ChineseMittenCrabs (Eriocheir
sinensis)in selected waters of the WesternUnitedStates with U.S. Bureauof Reclamation
Facilities,TracyFish Coll. Facil. Stud., 20, 1-61.
CzerniejewskiP.,De Giosa M., 2013, Realized fecundityin the first brood and size of eggs of
Chinesemitten crab (Eriocheirsinensis)- Laboratory studies, Int. Res. J. Biol. Sci., 2 (1), 1-6.
Czerniejewski P., Skuza L., Drotz M., Berggren M., 2012, Molecular connectedness between self and
none self-sustainable populations of Chinese mitten crab (Eriocheirsinensis,H.MilneEdwards,
1853) with focus to the Swedish Lake Vänernand the Oderand VistulaRiverin Poland,
Hereditas, 149 (2), 55-61,
http://dx.doi.org/10.1111/j.1601-5223.2012.02246.x
Dittel A., Epifanio C., 2009, Invasionbiology of the Chinesemitten crab Eriocheir sinensis:
abriefreview,J. Exp.Mar.Biol.Ecol., 374 (2), 79-92,
http://dx.doi.org/10.1016/j.jembe.2009.04.012
Drotz M., Berggren M., LundbergS., Lundin K., von Proschwitz T., 2010, Invasion routes, current
and historical distribution of the Chinesemitten crab (Eriocheir sinensis H.MilneEdwards,
1853)inSweden,Aquat. Inv.,5 (4),387-396,
http://dx.doi.org/10.3391/ai.2010.5.4.08
Garcia-de-Lomas J.,DanaE. D.,Lopez-SantiagoJ.,GonzalezR.,CeballosG., OrtegaF.,
2010, Management of the Chinesemitten crab, Eriocheirsinensis (H.Milne-Edwards, 1853)in
theGuadalquivir Estuary (Southern Spain), Aquat. Inv., 5 (3), 323-330,
http://dx.doi.org/10.3391/ai.2010.5.3.11
GollaschS.,2006,NOBANIS-Invasive Alien Species FactSheet-Eriocheir sinensis,
Onlinedatabaseof the North European andBalticNetworkon Invasive Alien Species -
NOBANIS,http://www.nobanis.org, (downloadedin February 2011).
Herborg L., Rushton S., Clare A., Bentley M., 2003, Spread of the Chinese mitten crab (Eriocheir
sinensisH.MilneEdwards)inContinentalEurope: analysis
of a historical data set, Hydrobiologia,503 (1-3), 21-28,
http://dx.doi.org/10.1023/B:HYDR.0000008483.63314.3c
Herborg L., Weetman D., Oosterhout C., Hän ing B., 2007, Geneticpopulation structureand
contemporary dispersalpatternsof a recentEuropeaninvader, theChinese mitten crab,
Eriocheir sinensis, Mol.Ecol.,16 (2), 231-242,
http://dx.doi.org/10.1111/j.1365-294X.2006.03133.x
Ingle R.,1986, TheChinesemittencrab EriocheirsinensisH.MilneEdwards-
a contentious immigrant, The London Naturalist, 65, 101-105.
Lee C.,RemfertJ., ChangY.,2007,Responsetoselectionandevolvabilityof invasive
populations,Genetica,129 (2), 179-192,
http://dx.doi.org/10.1007/s10709-006-9013-9
Lee C.,GelembiukG.,2008, Evolutionary originsof invasivepopulations,Evol.
Appl.,1 (3), 427-448,
http://dx.doi.org/10.1111/j.1752-4571.2008.00039.x
LeppärantaM.,
Myrberg K., 2009,Physical oceanography oftheBaltic Sea,
Springer,410 pp.,
http://dx.doi.org/10.1007/978-3-540-79703-6
MontúM., Anger K., BakkerC., 1996, Larval developmentof the Chinesemitten crab Eriocheir
sinensisH. Milne-Edwards(Decapoda:Grapsidae)reared in the laboratory, Helgol.
Meeresunters., 50 (2), 223-252,
http://dx.doi.org/10.1007/BF02367153
Normant M., ChrobakM., 2002, The Chinesemittencrab Eriocheirsinensis- an immigrant from
Asiain the Gulf of Gdańsk, Oceanologia, 44 (1), 124-126.
NormantM.,WiszniewskaA.,SzaniawskaA.,2000,The Chinesemitten crab
Eriocheirsinensis(Decapoda: Grapsidae)fromPolishwaters,Oceanologia, 42 (3), 375-383.
OjaveerH., GollaschS., Jaanus A.,Kotta J.,Laine A., MindeA., NormantM., PanovV.,
2007, Chinesemittencrab EriocheirsinensisintheBalticSea- a supply-sideinvader?,
Biol. Invasions,9 (4),409-418,
http://dx.doi.org/10.1007/s10530-006-9047-z
OttoT., Brandis D.,2011,First evidence ofEriocheir sinensis reproduction from
Schleswig-Holstein,NorthernGermany, western Baltic Sea, Aquat. Inv.,
6 (Suppl.1), S65-S69,
http://dx.doi.org/10.3391/ai.2011.6.S1.015
PanningA., 1939,TheChinese mitten crab,Rep.Board ofRegents ofthe
Smithsonian Institution (Washington), 3508, 409-418.
PetersN.,1933,Lebenskundlicher Teil,[in:] Diechinesische Wollhandkrabbe
(EriocheirsinensisH. Milne-Edwards) in Deutschland,N. Peters,A. Panning
& W. Schnakenbeck(eds.),Zool. Anz., 104, 59-155.
Peters N., 1938, Zur Fortpflanzungsbiologieder Wollhandkrabbe (Eriocheirsinensis
Milne Edwards),Mitt. Hambg.Zool. Mus. Inst., 47, 112-128.
Peters N., PanningA., 1938, Neue Untersuchungen über die chinesische
Wollhandkrabbein Europa, Mitt. Hambg.Zool. Mus. Inst., Hamburg,171 pp. RudnickD.,Hieb
K.,Grimmer K.,ReshV.,2003,Patterns andprocessesof
biological invasion: theChinesemittencrab inSanFranciscoBay,J. Bas.
App. Ecol., 4 (3), 249-262,
http://dx.doi.org/10.1078/1439-1791-00152
RudnickD., VeldhuizenT., TullisR., Culver C.,HiebK., TsukimuraB., 2005,
AlifestorymodelfortheSanFranciscoEstuarypopulationof theChinese mittencrab,
Eriocheirsinensis(Decapoda:Grapsoidea),Biol. Invasions, 7 (2), 333-350,
http://dx.doi.org/10.1007/s10530-004-2286-y
Ruiz G.,FegleyL.,FofonoffP.,Cheng Y., LemaitreR.,2006,Firstrecords of
Eriocheir sinensis H. Milne Edwards, 1853(Crustacea: Brachyura: Varunidae) for
Chesapeake Bay and the mid-Atlantic coast of North America, Aquat. Inv., 1 (3),137-142,
http://dx.doi.org/10.3391/ai.2006.1.3.7
Sax D., GainesS., 2003,Species diversity: from globaldecreases tolocal
increases,TrendsEcol.Evol.,18 (11),561-566,
http://dx.doi.org/10.1016/S0169-5347(03)00224-6
Shakirova F., PanovV.,Clark P., 2007, New recordsof the Chinesemittencrab, Eriocheir
sinensisH.MilneEdwards,1853,fromtheVolgaRiver, Russia, Aquat. Inv., 2 (3), 169-173,
http://dx.doi.org/10.3391/ai.2007.2.3.3
StevensB. G.,2006,Embryo development andmorphometryintheblueking crab
Paralithodes platypus studied byusing image andcluster analysis, J. Shellfish Res., 25 (2),569-576,
http://dx.doi.org/10.2983/0730-8000(2006)25[569:EDAMIT]2.0.CO;2
VeilleuxE., LafontaineY., 2007, Biologicalsynopsisof theChinesemittencrab
(Eriocheirsinensis), Can. Manuscr. Rep.Fish.Aquat.Sci., 2812, 45 pp.
Żmudziński L., 1961,Decapodsof theBalticSea,Prz.Zool.,5 (4),352-360, (in Polish).
Baltic herring (Clupea harengus membras) spawning grounds on the Lithuanian coast: current status and shaping factors
Oceanologia 2014, 56(4), 789-804
http://dx.doi.org/10.5697/oc.56-4.789
Aleksej Šaškov*, Andrius Šiaulys, Martynas Bučas, Darius Daunys
Coastal Research and Planning Institute, Klaipėda University,
H. Manto 54, LT-5808, Klaipėda, Lithuania;
e-mail: aleks@corpi.ku.lt
*corresponding author
keywords:
Spawning bed distribution, seabed geomorphology, slope, multibeam bathymetry
Received 25 November 2013, revised 10 April 2014, accepted 23 April 2014.
This study was supported by the Norwegian Financial Mechanism (project No. LT0047).
Abstract
During the 2009 and 2010 seasons Baltic herring (Clupea harengus membras L.) spawning grounds were investigated by SCUBA divers off the Lithuanian Baltic Sea coast. The most important spawning substrate was a hard bottom overgrown with red algae Furcellaria lumbricalis, but only 32.8% of potentially suitable spawning locations had herring eggs. Bottom geomorphological analysis using multibeam bathymetry revealed that the distribution of spawning beds is not random, but is determined rather by small-scale geomorphological features. The majority of the detected spawning locations were on local elevations characterised by 2.4±1.1 m depth differences and 4.8±1.8 slopes.
References
AneerG.,1989,Herring(ClupeaharengusL.)spawningandspawningground
characteristics intheBalticSea,Fish.Res.,8, 169-195,
http://dx.doi.org/10.1016/0165-7836(89)90030-1
Aneer G., Florell G., Kautsky V., Nellbring S., Sjostedt L., 1983,In-situ
observationsof Baltic herring (Clupea harengus membras)spawning behaviour in the Asko-Landsort
area, northern Baltic proper, Mar. Biol., 74, 105-110,
http://dx.doi.org/10.1007/BF00413912
Cardinale M.,Arrhenius F.,2000,Decreasingweight-at-ageofAtlantic herring (Clupea
harengus)fromtheBalticSea between1986 and1996:a statistical analysis,ICES J. Mar.
Sci., 57 (4), 882-893,
http://dx.doi.org/10.1006/jmsc.2000.0575
BaltNIIRH, 1989, Biological-ecological estimation of coastal zone productivityin the fishery area
of rybkolchoz 'Baltija', Lithuanian SSR, Riga, 77 pp., (in Russian).
Bergström L., KorpinenS., Andersson A., 2007, Essentialfish habitats and fish migration
patternsin the NorthernBaltic Sea, BALANCEInter. Rep. No. 29.,
11th Dec. 2007.
Bučas M., 2009, Distributionpatternsand ecological role of the red alga Furcellaria
lumbricalis(Hudson) J.V.Lamouroux oftheexposedBalticSeacoastof Lithuania,
PhDthesis,Klaipė da Univ., 124 pp.
DaunysD.,OleninS.,PaškauskasR.,ZemlysP.,OleninaI.,BučasM.,2007, Typology
and classificationof ecological status of Lithuanian coastal and transitionalwaters:an update
of existingsystem,procurement of servicesfor the institutional building for the Nemunas
River basin management, Tech. Rep. Transit. Fac. Pro j. No. 2004/016-925-04-06.
ElmerS.,1983,UndersokningavsillensreproductionmradeiBlekingeskargard
1980-1982, Medd. Fr.Havsffskelab.,Lysekil, 292, 1-14.
Evtjukhova B., BerzinshV., 1983, Prognosingof periodsand spawningmigration intensity in
spring spawning Baltic herring of the Gulf of Riga according to the temperature factorofenvironment,Tr.BaltNIIRH, Riga: Avots,18, 62-69,
(in Russian).
FedotovaE. A.,2010, Industrial-environmental characteristicsofBalticherring (Clupea
harengus membras L.)in the Lithuanianeconomiczone,PhDthesis, Kaliningrad State Tech.
Univ.,152 pp.,(in Russian).
GeffenA. J., 2009, Advancesinherring biology:fromsimpleto complex,coping with
plasticity and adaptability,ICES J. Mar.Sci., 66 (8),1688 p.
Gulbinskas S., Trimonis E., 1999, Lithodynamicprocesses in the strait of Klaipė da, Ann. Geogr.,
32, 93-102, (in Lithuanian).
JorgensenH. B.,HansenM. M., BekkevoldD., RuzzanteD. E.,Loeschcke V.,
2005, Marinelandscapes and population genetic structure of herring (Clupea harengus L.)in the
BalticSea,Mol.Ecol., 14 (10),3219-3234,
http://dx.doi.org/10.1111/j.1365-294X.2005.02658.x
ICES, 2008, Reportof the ICES AdvisoryCommitteeon FisheryManagement and
AdvisoryCommitteeon Ecosystems. Book 8.BalticSea, ICES Advice,12 pp.
KääriäJ., Rajasilta M., KurkilahtiM., Soikkeli M., 1997, Spawning bed selection
by the Balticherring (Clupeaharengus membras)inthe ArchipelagoofSW
Finland,ICES J. Mar.Sci., 54 (5),917-923,
http://dx.doi.org/10.1006/jmsc.1996.0204
Kääriä J., EklundJ., HallikainenS.,Kaäriä R.,Ra jasiltaM.,Rantaaho K.,
Soikkeli M., 1988, Effectsof coastal eutrophicationonthe spawning grounds of the Baltic
herring in the SWArchipelago of Finland,Kieler Meeresforsch., Sonderh., 6, 348-356.
KautskyH., 1993, Methodsfor monitoring of phytobenthic plant and animal communitiesinthe
BalticSea,[in:] Theecology of Balticterrestrial,coastal and offshoreareas -protection
and management,M. Pliński(ed.),Gdańsk, 21-59.
KlinkhardtM., 1996, DerHering,Magdeburg,Westarp-Wiss.Heidelberg, Spektrum Akad. Verl., 1-203.
Kornilovs G., 1994, Thespawning grounds and embryonicdevelopment ofBaltic herring in the Gulf
of Riga,PhDthesis, LatvianUniv., Riga,40 pp.
Koroliov A. P., 1991, Detailsof searchingand investigating forherring spawning grounds in the
Baltic Sea. Underwater research methods in fishery, PINRO, Murmansk, 149-160, (in Russian).
Krasovskaya N., 2002, Spawning of Balticherring in the Vistula Lagoon:effects of environmental
conditionsand stock parameters,Bull. Sea Fish.Inst., 1 (155), 3-25.
Maksimov J., LabanauskasV., OleninS., 1996, Balticherring reproductionand bottom
communities studiesintheKlaipė da-Palangaarea(theBaltic Sea
Lithuaniancoast),Zŭvininkystė Lietuvo je, 143-154, (in Lithuanian).
Messieh S., Rosenthal H., 1989, Massmortality of herring eggs on spawning beds on and near
Fisherman's Bank,Gulf of St.Lawrence,Canada. Aquat. Living Resour., 2, 1-8,
http://dx.doi.org/10.1051/alr:1989001
Olenin S., Labanauskas V., 1994, Mapping of the underwater biotopes and spawning
grounds in the Lithuanian coastal zone, Žuvininkystė Lietuvoje, 70-76, (in Lithuanian).
Olenin S., Daunys D., 2004, Coastal typology based on benthic biotope and
community data: the Lithuanian case study, [in:] Baltic Sea typology. Coastline
Reports, G. Schernewski & M. Wielgat (eds.), Vol. 4, 65-83.
Oulasvirta P., Lehtonen H., 1988, Effects of sand extraction on herring spawning
and fishing in the Gulf of Finland, Mar. Pollut. Bull., 19 (8), 383-386,
http://dx.doi.org/10.1016/0025-326X(88)90272-X
Rajasilta M., Eklund J., Laine P., Jönsson N., Lorenz T., 2006, Intensive
monitoring of spawning populations of the Baltic herring (Clupea harengus
membras L.), Fin. Rep. Stud. Proj. Ref. No 96-068, 1997-1999, SEILI
Archipelago Res., Inst. Publ. 3, Turku.
Rajasilta M., Laine P., Eklund J., 2006, Mortality of herring eggs on different
algal substrates (Furcellaria spp. and Cladophora spp.) in the Baltic Sea -
an experimental study, Hydrobiologia, 554 (1), 127-130,
http://dx.doi.org/10.1007/s10750-005-1012-9
Rajasilta M., Eklund J., Hänninen J., Kurkilahti M., Kääriä J., Rannikko P.,
Soikkeli M., 1993, Spawning of herring (Clupea harengus membras L.) in
the Archipelago Sea, ICES J. Mar. Sci., 50 (3), 233-246,
http://dx.doi.org/10.1006/jmsc.1993.1026
Rajasilta M., Eklund J., Kaaria J., Rantaaho K., 1989, The deposition and
mortality of the eggs of the Baltic herring, Clupea harengus membras, L., on
different substrates in the south-west archipelago of Finland, J. Fish Biol.,
34 (3), 417-427,
http://dx.doi.org/10.1111/j.1095-8649.1989.tb03324.x
Silva C.D., Tytlerb P., 1973, The influence of reduced environmental oxygen on
the metabolism and survival of herring and plaice larvae, Neth. J. Sea Res., 7,345-362,
http://dx.doi.org/10.1016/0077-7579(73)90057-4
Veersalu A., Saat T., 2003, Chronology of embryonic development in Baltic herring
Clupea harengus membras, Proc. Estonian Acad. Sci. Biol. Ecol., 52 (1), 17-25.
Population structure, morphometry and individual condition of the non-native crab Rhithropanopeus harrisii (Gould, 1841), a recent coloniser of the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia 2014, 56(4), 805-824
http://dx.doi.org/10.5697/oc.56-4.805
Joanna Hegele-Drywa*, Monika Normant, Barbara Szwarc, Anna Podłuska
Department of Experimental Ecology of Marine Organisms, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: ocejhd@ug.edu.pl
*corresponding author
keywords:
North American Harris mud crab, introduced, crustacean, invasive, Poland, condition factor
Received 22 October 2013, revised 26 February 2014, accepted 20 March 2014.
This research was funded by the Polish National Science Centre, grant No. 3016//B//P01//2011//40.
Abstract
The aim of this study was to characterise the introduced North American Harrismud crab Rhithropanopeus harrisii, which occurs in the Gulf of Gdańsk, Poland(southern Baltic Sea). Of the 920 specimens caught between 2006 and 2010,males and females made up 44 and 40% respectively, whereas juveniles (<4.4 mmcarapace width) comprised 16%. Overall carapace widths ranged from 1.96 mmto 21.40 mm (mean 9.03±4.11 mm). Ovigerous females (mean 11.12±2.76 mm)were present in the population from June to October. Most of the adult specimenscollected (n = 158) had carapace widths between 10.1 and 12.0 mm. The wet weightof R. harrisii varied from 0.005 to 4.446 g (mean 0.410±0.569 g). Females exhibiteda negative allometric increase in weight (b = 2.77), males an isometric increase inweight (b = 3.02). The condition factor (K) in R. harrisii varied from 0.02 to 0.08(mean 0.05±0.01).
References
Abby-KalioN. J.,WarnerG. F.,1989, Heterochelyandhandednessintheshore
crab Carcinusmaenas(L.)(Crustacea:Brachyura), Zool. J. Linn. Soc.-Lond., 96 (1), 19-26,
http://dx.doi.org/10.1111/j.1096-3642.1989.tb01819.x
Ba J., Hou Z., Platvoet D., Zhu L., Li S., 2010, Is Gammarus tigrinus(Crustacea, Amphipoda)
becoming cosmopolitanthrough shipping?Predictingits potential invasiverangeusing
ecological nichemodeling,Hydrobiologia,649 (1),183-194,
http://dx.doi.org/10.1007/s10750-010-0244-5
BaceevičiusE., Gasiūnaitė Z. R., 2008,Two crabspecies-Chinese mitten crab
(Eriocheirsinensis Milne-Edwards) and mud crab (Rhithropanopeus harrisii Gould ssp. Tridentatus
Maitland)in the Lithuanian coastal waters, Baltic Sea, Trans.Wat. Bull., 2, 63-68.
Balasubramanian C. P.,SuseelanC.,2001, Biochemicalcomposition of the deep- water crab
Charybdissmithii,IndianJ. Fish.,48 (3), 333-335.
Bijde VaateA.,JażdżewskiK.,Ketelaars H. A. M.,GollaschS.,vanderVelde G., 2002,
Geographical patterns in the range extension of Ponto-Caspian macroinvertebrate speciesin
Europe,Can.J. Fish.Aquat.Sci., 59 (7),1159-1174,
http://dx.doi.org/10.1139/f02-098
BrancoJ. O., MasunariS., 2000, Reproductiveecology of the blue crab Callinectes danaeSmith,
1869intheConceiçãolagoonsystem, SantaCatarina Isle, Brazil,Rev. Brasil.
Biol., 60 (1), 17-27.
Costa T., Soares-Gomes A., 2008, Relative growth of the fiddler crab Uca rapax (Crustacea:
Decapoda:Ocypodidae)ina tropicallagoon (Itaipu), Southeast Brazil,Pan-American J. Aquat.
Sci., 3 (2), 94-100.
Cox G. W.,2004, Alienspeciesandevolution: theevolutionaryecology of exotic plants,
animals,microbes,and interactingnativespecies,IslandPr.,400 pp. Czerniejewski P.,
2009,Some aspectsofpopulation biologyofthemudcrab,
Rhithropanopeus harrisii (Gould,1841) in the Odra estuary,Poland, Oceanol.
Hydrobiol.Stud., 38 (4), 49-62.
CzerniejewskiP.,2010, Changes in conditionand in carapace length and width of the Chinese
mittencrab (Eriocheirsinensis H. Milne Edwards, 1853) harvested in the Odra Riverestuaryin
1999-2007, Oceanol. Hydrobiol. Stud.,39 (2), 25-36,
http://dx.doi.org/10.2478/v10009-010-0017-5
CzerniejewskiP.,RybczykA.,2008, Bodyweight,morphometry,and diet ofthe
mud crab Rhithropanopeusharrisiitridentatus (Maitland,1874) inthe Odra
Estuary,Poland, Crustaceana, 81 (11), 1289-1299,
http://dx.doi.org/10.1163/156854008X369483
Czerniejewski P., Wawrzyniak W., 2006, Body weight, condition and carapace width and length in the
Chinesemitten crab (EriocheirsinensisH.Milne-Edwards,
1853) collected from the Szczecin Lagoon (NWPoland)in spring and autumn
2001, Oceanologia, 48 (2), 275-285.
De Goes Y. M., Fransozo A., 2000, Sex ratio analysis in Eriphia gonagra (Decapoda, Xanthidae),
InheringiaZool., 88, 151-157.
De Man J. G., 1892, Carcinologicalstudiesinthe LeydenMuseum,Notes Leyden
Mus., 14, 225-264.
Demel K., 1953, Nowy gatunek w faunie Bałtyku, Kosmos, 2, 105-106.
DeRivera C. E., BackwellP. R. Y.,Christy J. H. C.,VehrencampS. L.,2003, Density
affects female and male mate searching in the fiddler crab, Uca beebei, Behav. Ecol. Sociobiol., 53, 72-83.
Duarte M. S.,Maia-LimaF. A.,MolinaW. F., 2008,Interpopulational
morphological analyses and fluctuating asymmetry in the brackish crab Cardisomaguanhumi Latreille
(Decapoda,Gecarcinidae), on the Brazilian Northeast coastline, Pan-American J. Aquat.Sci., 3
(3), 294-303.
EmmanuelB. E., 2008, The fishery and bionomics of the swimming crab, Callinectes
amnicola (DeRocheburne, 1883) from a tropical lagoon and its adjacent creek,South West,
Nigeria, J. Fish. Aquat. Sci., 3 (2), 114-125.
FloerlO., Inglis G. J.,HaydenB. J., 2005, Arisk-based predictivetool to prevent
accidental introductionsof nonindigenousmarinespecies, Environ.Manage.,
35 (6), 765-778,
http://dx.doi.org/10.1007/s00267-004-0193-8
Forward Jr. R. B.,2009,LarvalBiology oftheCrab Rhithropanopeus harrisii
(Gould): a synthesis, Biol. Bull., 216 (3), 243-256.
FowlerA. E.,ForsströmT., vonNumersM.,VesakoskiO.,2013,The North American
mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized NorthernBaltic Sea:
distributionandecology,Aquat. Inv., 8 (1), 89-96,
http://dx.doi.org/10.3391/ai.2013.8.1.10
FransozoA.,GarciaR. B.,MantelattoF. L. M.,2003,Morphometryandsexual maturityof
the tropicalhermitcrab Calcinustibicen(Crustacea,Anomura) from Brazil, J.Nat.
Hist., 37 (3), 297-304,
http://dx.doi.org/10.1080/713834686
GisslerC. F., 1884,The crabparasite, Saccilina, Am.Nat.,18 (3), 225-229,
http://dx.doi.org/10.1086/273608
Gollasch S., David M., Leppäkoski E., 2011, Pilotrisk assessmentsof alien species transfer on
intra-Balticship voyages, Helsinki Comm. - Baltic Mar. Environ. Protect. Comm.,HELCOM,98 pp.
Gollasch S., Leppäkoski E., 1999, Initialrisk assessment of alien species in Nordic coastal
waters, Nord. Counc.Minist.,Copenhagen, 244 pp.
Gonçalves F., Ribeiro R., Soares M. V. M., 1995, Rhithropanopeus harrisii (Gould),
an Americancrab in the Estuary of the Mondego River, J. Crust.Biol., 15 (4), 756-762,
http://dx.doi.org/10.2307/1548824
GorceG.,Erguden D.,SangunL.,CekicM.,AlagozS.,2006,Width/length relationship
oftheblue crab (Callinectes spaidusRathbun1986)population living in CamlikLagoon Lake
(Yumurtalik),Pakistan J. Biol. Sci., 9 (8), 1460-1486,
http://dx.doi.org/10.3923/pjbs.2006.1460.1464
Hæfner P. A. Jr.,Spaargaren D. H., 1993, Interactionsof ovary and hepatopancreas during
reproductive cycle of Crangon crangon (L.) I. Weight and volume relationships, J.Crust.
Biol.,13 (3), 523-531,
http://dx.doi.org/10.2307/1548792
Hartnoll R. G.,1969, MatinginBrachyura,Crustaceana, 161-181,
http://dx.doi.org/10.1163/156854069X00420
Hegele-Drywa J.,Normant M., 2009, Feeding ecology of the Americancrab Rhithropanopeusharrisii
(Crustacea,Decapoda)inthe coastal waters ofthe BalticSea,Oceanologia,51 (3), 361-375,
http://dx.doi.org/10.5697/oc.51-3.361
Hegele-DrywaJ.,NormantM.,2014,Non-nativecrabRhithropanopeusharrisii (Gould, 1984) -
a new component of the benthic communities in the Gulf of Gdańsk(southernBalticSea),
Oceanologia,56 (1),125-139,
http://dx.doi.org/10.5697/oc.56-1.125
HeppL. U., FornelR.,RestelloR. M., TrevisanA., SantosS., 2012, Intraspecific
morphological variation in a freshwater crustacean Aegla Plana in Southern Brazil: effectsof
geographical ssolationoncarapaceshape,J. Crust. Biol.,
32 (4), 511-518,
http://dx.doi.org/10.1163/193724012X630660
JensenK. R., KnudsenJ.,2005, Asummary of alien marine benthic invertebrates in Danish
waters, Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 137-162.
KondrackiJ.,2002, Regionalgeography of Poland, Wyd.Nauk.PWN,Warszawa,
463 pp., (in Polish).
Kotta J., OjaveerH., 2012, Rapidestablishment of the alien crab Rhithropanopeus harrisii
(Gould)in the Gulf of Riga, Est.J. Ecol., 61, 4 pp., 293-298.
KujawaS., 1957, Biologyand culture of the crab Rhithropanopeusharrisii(Gould) subsp.
tridentatus (Maitland)from Vistula Lagoon, Wszechświat,2, 57-59, (in Polish).
Le CrenE. D.,1951, Thelength-weight relationshipand seasonalcycleingonad weight and
conditionfactorinthe perch (Percafluviatilis),J. Anim.Ecol.,
20 (2), 201-219,
http://dx.doi.org/10.2307/1540
Leppäkoski E.,2005, Thefirst twenty yearsof invasionbiology inthe BalticSea area,
Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 5-17.
López-Greco L. S., Rodríguez E. M., 1999, Annual reproduction and growth of adult crabs
Chasmagnathus granulata (Crustacea, Brachyura, Grapsidae), Cah. Biol. Mar., 40, 155-164.
LuppiT. A.,SpivakE. D.,BasC. C., AngerK., 2004, Moltandgrowth ofan
estuarinecrab,Chasmagnathusgranulates (Brachyura: Varunidae),inMar
Chiquita coastallagoon,Argentina, J. Appl.Ichthyol., 20,333-344,
http://dx.doi.org/10.1111/j.1439-0426.2004.00575.x
Maitland R. T., 1874, Naamlijst van Nederlandsche Schaaldieren, Tijdschr. Nederl.
Deirk. Ver.,1, 228-269.
Majewski A., 1972, HydrologicalcharacteristicsofPolishcoastal estuary waters, Gdańsk,
PIHM, 105, 3-37, (in Polish).
Mantelatto F. L.,Fernandes-Góes L. C., Fanticci M. Z.,Pardo L. M.,de Góes J. M.,
2010, Acomparativestudy ofpopulation traitsbetween two SouthAmerican populations of the
striped-legged hermit crab Clibanariusvittatus, ActaOecol.,
36 (1),10-15,
http://dx.doi.org/10.1016/j.actao.2009.09.003
MariappanP.,BalasundaramC.,SchmitzB.,2000,Decapodcrustacean chelipeds:an
overview,J. Biosci,25 (3),301-313,
http://dx.doi.org/10.1007/BF02703939
MathesonK., Gagnon P., 2012,Effects oftemperature, bodysize, andchela losson
competitionfora limitedfood resourcebetween indigenousrock crab (Cancer irroratusSay)
and recentlyintroduced green crab (Carcinus maenas L.), J. Exp. Mar.Biol.Ecol., 428, 49-56,
http://dx.doi.org/10.1016/j.jembe.2012.06.003
Michalski K., 1957, Rhithropanopeusharrisiisubsp.tridentata (Mtl.)in the Rivers
Vistulaand Motława,Prz.Zool., 1 (1),68-69, (in Polish).
Milke L. M., Kennedy V. S., 2001, Mud crabs (Xanthidae) in Chesapeake Bay:claw characteristics
and predation onepifaunalbivalves,Invert.Biol.,120 (1),67-77,
http://dx.doi.org/10.1111/j.1744-7410.2001.tb00027.x
Mohapatra A., Mohanty R. K., Mohanty S. K., Dey S. K., 2010, Carapace width and weight
relationships, conditionfactor, relative conditionfactor and gonado- somaticindex(GSI) of
mud crabs (Scyllaspp.)fromChilika Lagoon,India, Indian J. Mar.Sci., 39 (1),120-127.
MorganS. G,Goy J. W., CostlowJ. D., 1998, Effectofdensity,sexratio,and refractory
period on spawning of the mud crab Rhithropanopeusharrisiiin the laboratory, J. Crust. Biol., 8
(2), 245-249,
http://dx.doi.org/10.2307/1548316
Nash R. D. M., Valencia A. H., Geffen A. J., 2006, Theorigin of Fulton's Condition
Factor- setting the record straight,Fisheries, 31 (5),236-238.
Nehring S., Leuchs H., 1999, Rhithropanopeusharrisii(Gould, 1841) (Crustacea: Decapoda)- ein
amerikanischesNeozoon im Elbeästuar,Lauterbornia, 35, 49-51.
Normant M., Gibowicz M., 2008,Salinity induced changes in haemolymph osmolality
and total metabolic rate of the mud crab Rhithropanopeusharrisii Gould,1841 from Baltic
coastal waters,J. Exp. Mar.Biol. Ecol., 355 (2),145-152,
http://dx.doi.org/10.1016/j.jembe.2007.12.014
Normant M., Miernik J., Szaniawska A., 2004, Remarks on the morphology and the lifecycleof
Rhithropanopeusharrisiitridentatus(Maitland)fromthe Dead Vistula River, Oceanol.
Hydrobiol. Stud., 33 (4), 93-102.
NormantM.,WiszniewskaA.,SzaniawskaA.,2000,TheChinesemittencrab
Eriocheir sinensis(Decapoda: Grapsidae) fromPolishwaters, Oceanologia,
42 (3), 375-383.
OjaveerH.,GalilB. S.,MinchinD.,OleninS.,AmorimA.,Canning-Clode J., ChainhoP.,
CoppG. H.,GollaschS., JelmertA.,LehtiniemiM.,McKenzie C., Mikuš J., Miossec L.,
Occhipinti-Ambrogi A., PećarevićM., PedersonJ., Quilez-BadiaG., WijsmanJ. W. M., Zenetos
A., 2014, Tenrecommendations for advancing the assessment and management of non-indigenous
species in marine ecosystems, Mar. Policy, 44, 160-165,
http://dx.doi.org/10.1016/j.marpol.2013.08.019
Oluwatoyin A., Akintade A., Edwin C., VictorK., 2013, AStudy of length-weight relationshipand
condition factorofWest African Blue Crab (Callinectes pallidus)fromOjoCreek,
Lagos, Nigeria,Am.J. Res.Comm.,1 (3),102-144.
PaavolaM., OleninS., Leppäkoski E.,2005, Areinvasivespeciesmost successful in habitat
of low native species richnessacross European brackish water seas?, Estuar. Coast.Shelf Sci.,
64 (4),738-750, http://dx.doi.org/10.1016/j.ecss.
2005.03.021.
Patil K. M.,Patil M. U.,2012,Length-weightrelationshipandconditionfactor of
freshwater crab Barytelphusagurini,(Decapoda,Brachyura),J. Exp.Sci.,
3 (5), 13-15.
Paturej E.,KrukW.,2011, Theimpact of environmentalfactorson Zooplankton communitiesin
the Vistula Lagoon, Oceanol. Hydrobiol.Stud., 40 (2), 37-48.
Pinheiro M. A. A., Taddei F. G., 2005,Relationship betweenweight/carapace width and
condition factor of Dilocarcinuspagei Stimpson (Crustacea, Trichodactylidae) fromPretoRiver
inSa~oJosé,Sa~oPaulo, Brasil,Revis. Brasil. Zool., 22, 825-829, (in Portuguese).
PinheiroM. A. A., Hattori G. Y., 2006, Relative growthof mangrove crab Ucides
cordatus (Crustacea,Brachyura,Ocypodidae)at Iguape (SP),Brazil, Braz. Arch. Biol.
Technol.,49 (5), 813-823,
http://dx.doi.org/10.1590/S1516-89132006000600016
PinheiroM. A. A., FiscarelliA. G., 2009, Length-weight relationship and condition factor of the
mangrove crab Ucidescordatus (Linnaeus, 1763) (Crustacea, Brachyura,Ucididae), Braz.
Arch.Biol.Technol., 52 (2), 397-406,
http://dx.doi.org/10.1590/S1516-89132009000200017
Pro jecto-Garcia J.,CabralH., Schubart C. D., 2010, High regional differentiation in a North
Americancrab speciesthroughout its native range and invaded Europeanwaters:a
phylogeographic analysis, Biol. Invasions,12 (1), 253-263,
http://dx.doi.org/10.1007/s10530-009-9447-y
Roche D. G.,TorchinM. E.,2007, Establishedpopulation ofthe NorthAmerican Harrismud
crab, Rhithropanopeusharrisii(Gould1841)(Crustacea: Brachyura: Xanthidae)inthe
PanamaCanal,Aquat.Inv.,2 (3),155-161,
http://dx.doi.org/10.3391/ai.2007.2.3.1
Rodrigez G., Suarez H., 2001, Anthropogenicdispersalofdecapod crustaceansin
aquatic environments,Intersciencia, 26 (7),282-288.
RuizG. M., Carlton J. T., GrosholzE. D., Hines A. H., 1997, Globalinvasionsof marine and
estuarine habitats by non-indigenous species:mechanisms, extent, and consequences,Integr. Comp.
Biol., 37 (6),621-632,
http://dx.doi.org/10.1093/icb/37.6.621
Ryan E. P.,1956, Observations onthelifehistoryandthedistributionofthe
Xanthide(mudcrabs)ofChesapeakeBay, Am. Mild.Nat., 56 (1),138-162,
http://dx.doi.org/10.2307/2422450
RychterA., 1999, Energyvalue and metabolism of the mud crab Rhithropanopeus harrisii
tridentatus (Crustacea,Decapoda)in relation to ecological conditions, Ph. D. thesis, Univ.
Gdańsk, Gdynia,108 pp.,(in Polish).
SangunL.,TureliC.,AkamcaE.,DuysakO.,2009, Width/length-weightand width-length
relationshipsfor8 crab speciesfromnorth-Mediterraneancoast of Turkey,J. Anim.Vet.
Adv., 8 (1), 75-79.
Seed R., HughesR. N.,1995, Criteria forpreysize-selectioninmolluscivorous crabs with
contrasting claw morphologies,J. Exp. Mar.Biol.Ecol., 193 (1-2),177-195,
http://dx.doi.org/10.1016/0022-0981(95)00117-4
SilvaA. C., SilvaI. C., Hawkins S. J., BoaventuraD. M., Thompson R. C., 2010, Cheliped
morphological variation of the intertidal crab Eriphia verrucosa across shores of differing exposure
to wave action, J. Exp. Mar. Biol. Ecol., 391 (1-2), 84-91,
http://dx.doi.org/10.1016/j.jembe.2010.06.012
SrijayaT. C., Pradeep P. J.,MithunS., Hassan A., Shaharom F., Chatterji A.,
2010, Anew record on the morphometricvariationsinthe populations of Horseshoe Crab
(Carcinoscorpius rotundicauda Latreille) obtained from two differentecologicalhabitats of
peninsularMalaysia, OurNature,8 (1),204-211,
http://dx.doi.org/10.3126/on.v8i1.4329
TuroboyskiK.,1973, BiologyandecologyofthecrabRhithropanopeusharrisii ssp.
tridentatus, Mar. Biol., 23 (4),303-313,
http://dx.doi.org/10.1007/BF00389338
Warburg M. R., Davidson D., Yifrach H., Sayag L., Tichomirova Y., 2012, Changes in population
structure and body dimensionsof two xanthid crabs:a long-term study in a single boulder-shore,
Arthropods, 1 (2),40-54.
WilliamsA. B., 1984, Shrimps,lobsters,andcrabsofthe AtlanticCoastofthe eastern
United States,Maine to Florida, Smith. Inst. Press, Washington D. C., 401-404.
WolffT., 1954, Occurrence oftwo eastAmerican speciesofcrabsinEuropean waters,
Nature, 174 (4421), 188-189,
http://dx.doi.org/10.1038/174188a0
Zaitsev Y., ÖztürkB.,
2001, Exoticspeciesinthe Aegean,Marmara,Black,Azov
and Caspian Seas,Turkish Mar. Res. Foun.,Istanbul,265 pp.
Zimmermann G., Bosc P., ValadeP.,Cornette R.,AmézianeN., DebatV., 2011, Geometric
morphometrics of carapace of Macrobrachiumaustrale (Crustacea: Palaemonidae)fromReunion
Island,ActaZool.,93 (4),492-500,
http://dx.doi.org/10.1111/j.1463-6395.2011.00524.x
ŻmudzińskiL.,1961, Decapodsof theBalticSea,Prz.Zool.,5 (4),352-360, (inPolish).
Bacterial community structure influenced by Coscinodiscus sp. in the Vistula river plume
Oceanologia 2014, 56(4), 825-856
http://dx.doi.org/10.5697/oc.56-4.825
Anetta Ameryk1,*, Richard L. Hahnke2,3, Sławomira Gromisz1, Janina Kownacka1,Mariusz Zalewski1, Lena Szymanek1, Joanna Całkiewicz1, Julita Dunalska4, Jens Harder2
1National Marine Fisheries Research Institute,
Kołłątaja 1, 81-332 Gdynia, Poland;
e-mail: anetta.ameryk@mir.gdynia.pl
*corresponding author
2Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany
3DSMZ German Collection of Microorganisms and Cell Cultures,
Inhoffenstr. 7b, D-38124 Braunschweig, Germany
4University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering,
ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
keywords:
Baltic Sea, Bacterioplankton, Coscinodiscus sp., T-RFLP, Clone library
Received 2 September 2013, revised 7 April 2014, accepted 29 April 2014.
This research was carried out with the support of a grant from the Polish Ministryof Science and Higher Education (No. N N304 025334) and statutory activities of theDepartment of Fisheries Oceanography and Marine Ecology of the National MarineFisheries Research Institute (project P1-2).
Abstract
The Gulf of Gdańsk is influenced by freshwater inflow from the River Vistulaand by a wind-driven current along the coast. Bacterial communities from fivestations along a salinity gradient were sampled during one day and analysed by terminal restriction fragment length polymorphism (T-RFLP), catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) and 16S rRNA gene libraries. On the day of sampling, we observed a probable current-driven seawater influx into the inner part of the gulf that separated the gulf into distinct water bodies. Members of the diatom Coscinodiscus sp. dominated one of these water bodies and influenced the bacterial community. The coexistence of typicallyfreshwater and marine bacterioplankton populations in the Vistula river plumesuggested an integration of some freshwater populations into the Baltic Sea bacterioplankton.
References
Allgaier M., Uphoff H., Felske A., Wagner-Döbler I., 2003, Aerobic anoxygenic
photosynthesis in Roseobacter clade bacteria from diverse marine habitats,
Appl. Environ. Microb., 69 (9), 5051-5059,
http://dx.doi.org/10.1128/AEM.69.9.5051-5059.2003
Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D.A.,
1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow
cytometry for analyzing mixed microbial populations, Appl. Environ. Microb.,
56, 1919-1925.
Amann R., Fuchs B.M., 2008, Single-cell identification in microbial communities
by improved fluorescence in situ hybridization techniques, Nature, 6, 339-348.
Ameryk A., Podgórska B., Witek Z., 2005, The dependence between bacterial
production and environmental conditions in the Gulf of Gdańsk, Oceanologia,
47 (1), 27-45.
Amin S.A., Parker M. S., Armbrust E.V., 2012, Interactions between diatoms and
bacteria, Microbiol. Mol. Biol. Rev., 76 (3), 667-684,
http://dx.doi.org/10.1128/MMBR.00007-12
Andersson A. F., Riemann L., Bertilsson S., 2010, Pyrosequencing reveals
contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton
communities, ISME J., 4, 171-181,
http://dx.doi.org/10.1038/ismej.2009.108
Azam F., Fenchel T., Field J.G., Gray J. S., Meyer-Reil L.A., Thingstad F., 1983,
The ecological role of water-column microbes in the Sea, Mar. Ecol.-Prog. Ser.,
10, 257-263,
http://dx.doi.org/10.3354/meps010257
Björnsen P. K., 1986, Automatic determination of bacterioplankton biomass by
image analysis, Appl. Environ. Microb., 51 (6), 1199-1204.
BMEPC, 1988, Guidelines for the Baltic Monitoring Programme for the third stage,
Balt. Mar. Environ. Prot. Comm., Helsinki, 1-161.
Boström K.H., Simu K., Hagström Å., Riemann L., 2004, Optimization of
DNA extraction for quantitative marine bacterioplankton community analysis,
Limnol. Oceanogr.-Meth., 2, 365-373,
http://dx.doi.org/10.4319/lom.2004.2.365
Bouvier T.C., del Giorgio P.A., 2002, Compositional changes in free-living bacterial
communities along a salinity gradient in two temperate estuaries, Limnol.
Oceanogr., 47 (2), 453-470,
http://dx.doi.org/10.4319/lo.2002.47.2.0453
Buchan A., González J.M., MoranM.A., 2005, Overview of the marine Roseobacter
lineage, Appl. Environ. Microb., 71 (10), 5665-5677,
http://dx.doi.org/10.1128/AEM.71.10.5665-5677.2005
Campbell B. J., Kirchman D. L., 2013, Bacterial diversity, community structure
and potential growth rates along an estuarine salinity gradient, ISME J., 7, 210-220,
http://dx.doi.org/10.1038/ismej.2012.93
Clarke K.R., 1993, Non-parametric multivariate analyses of changes in community
structure, Aust. J. Ecol., 18 (1), 117-143,
http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x
Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-
Mohideen A. S., McGarrell D.M., Marsh T., Garrity G.M., Tiedje J.M., 2009,
The Ribosomal Database Project: improved alignments and new tools for rRNA
analysis, Nucleic Acids Res., 37 (S1), D141-D145,
http://dx.doi.org/10.1093/nar/gkn879
Collins T. J., 2007, ImageJ for microscopy, BioTechniques, 43 (Suppl. 1), 25-30.
Cottrell M.T., Kirchman D. L., 2003, Contribution of major bacterial groups to
bacterial biomass production (thymidine and leucine incorporation) in the
Delaware estuary, Limnol. Oceanogr., 48 (1), 168-178,
http://dx.doi.org/10.4319/lo.2003.48.1.0168
Crump B.C., Hopkinson C. S., Sogin M. L., Hobbie J.E., 2004, Microbial
biogeography along an estuarine salinity gradient: combined influences of
bacterial growth and residence time, Appl. Environ. Microb., 70 (3), 1494-1505,
http://dx.doi.org/10.1128/AEM.70.3.1494-1505.2004
Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M., 1999, The domainspecific
probe EUB338 is insufficient for the detection of all Bacteria:
development and evaluation of a more comprehensive probe set, Syst.
Appl. Microbiol., 22 (2), 434-444,
http://dx.doi.org/10.1016/S0723-2020(99)80053-8
Dang H., Li T., Chen M., Huang G., 2008, Cross-ocean distribution of
Rhodobacterales bacteria as primary surface colonizers in temperature coastal
marine waters, Appl. Environ. Microb., 74 (1), 52-60,
http://dx.doi.org/10.1128/AEM.01400-07
DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber
T., Dalevi D., Hu P., Andersen G. L., 2006, Greengenes, a chimera-checked
16S rRNA gene database and workbench compatible with ARB, Appl. Environ.
Microb., 72 (7), 5069-5072,
http://dx.doi.org/10.1128/AEM.03006-05
Dixon P., 2003, VEGAN, a package of R functions for community ecology, J. Veg. Sci., 14 (6), 927-930,
http://dx.doi.org/10.1111/j.1654-1103.2003.tb02228.x
Dunalska J.A., Górniak D., Jaworska B., Evelyn E., Gaiser E.E., 2012, Effect of
temperature on organic matter transformation in a different ambient nutrient
availability, Ecol. Eng., 49, 27-34,
http://dx.doi.org/10.1016/j.ecoleng.2012.08.023
Edler L., 1979, Recommendations on methods for marine biological studies in the
Baltic Sea. Phytoplankton and chlorophyll, Balt. Mar. Biol. Publ., 5, 1-38.
Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R., 2001,
Isolation of novel pelagic bacteria from the German Bight and their seasonal
contributions to surface picoplankton, Appl. Environ. Microb., 67 (11), 5134-5142,
http://dx.doi.org/10.1128/AEM.67.11.5134-5142.2001
Evans C.A., O'Reilly J. E., Thomas J.P., 1987, A handbook for measurement of
chlorophyll a and primary productivity, BIOMASS Sci., 8, 114 pp.
Fukushima T., Park J., Imai A., Matsushige K., 1996, Dissolved organic carbon
in a eutrophic lake; dynamics, biodegradability and origin, Aquat. Sci., 58 (2), 139-157,
http://dx.doi.org/10.1007/BF00877112
Grasshoff K., Erhardt M., Kremling K. (eds.), 1983, Methods of sea water analysis,
Verlag Chemie, Weinheim, 63-97, 127-187.
Hahnke R. L., Probian C., Fuchs B.M., Harder J., 2013, Variations of pelagic
bacterial communities in the North Atlantic Ocean coincide with water
bodies, Aquat. Microbiol. Ecol., 71 (2), 131-140,
http://dx.doi.org/10.3354/ame01668
HELCOM, 1988, Guidelines for the Baltic Monitoring Programme for the third
stage: Part D, Biological determinands, Balt. Sea Environ.t Proc., 27D, 1-161.
HELCOM, 2001, Manual for marine monitoring in the COMBINE programme
of HELCOM. Part C. Programme for monitoring of eutrophication and
its effects. Annex C-6: Phytoplankton species composition, abundance
and biovolume, Baltic Marine Environment Protection Commission,
Helsinki, http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/en_GB/annex6/
HELCOM, 2004, The fourth Baltic Sea pollution load compilation (PLC-4), Balt.
Sea Environ. Proc., 93, 188 pp.
Herlemann D. P.R., Labrenz M., Jürgens K., Bertilsson S., Waniek J. J., Andersson
A. F., 2011, Transitions in bacterial communities along the 2000 km salinity
gradient of the Baltic Sea, ISME J., 5, 1571-1579,
http://dx.doi.org/10.1038/ismej.2011.41
Herlemann D. P.R., Lundin D., Labrenz M., Jürgens K., Zheng Z., Aspeborg
H., Andersson A. F., 2013, Metagenomic de novo assembly of an aquatic
representative of the Verrucomicrobial class Spartobacteria, mBio, 4 (3),
http://dx.doi.org/10.1128/mBio.00569-12
Holmfeldt K., Dziallas C., Titelman J., Pohlmann K., Grossart H.-P., Riemann
L., 2009, Diversity and abundance of freshwater Actinobacteria along
environmental gradients in the brackish northern Baltic Sea, Environm.
Microbiol., 11 (8), 2042-2054,
http://dx.doi.org/10.1111/j.1462-2920.2009.01925.x
Hoppe H.-G., Giesenhagen H.C., Gocke K., 1998, Changing patterns of bacterial
substrate decomposition in a eutrophication gradient, Aquat. Microb. Ecol., 15 (1), 1-13,
http://dx.doi.org/10.3354/ame015001
Hoppe H-G., Gocke K., Koppe R., Begler C., 2002, Bacterial growth and primary
production along a north-south transect of the Atlantic Ocean, Nature, 416, 168-171,
http://dx.doi.org/10.1038/416168a
Huber T., Faulkner G., Hugenholtz P., 2004, Bellerophon: a program to detect
chimeric sequences in multiple sequence alignments, Bioinformatics, 20 (14), 2317-2319,
http://dx.doi.org/10.1093/bioinformatics/bth226
Jędrasik J., Cieślikiewicz W., Kowalewski M., Bradtke K., Jankowski A., 2008, 44
years hindcast of the sea level and circulation in the Baltic Sea, Coast. Eng.,
55 (11), 849-860,
http://dx.doi.org/10.1016/j.coastaleng.2008.02.026
Kirchman D., Knees E., Hodson R., 1985, Leucine incorporation and its potential
as a measure of protein synthesis by bacteria in natural aquatic systems, Appl.
Environ. Microb., 49 (3), 599-607.
Kirchman D. L., Dittel A. I., Malmstrom R.R., Cottrell M.T., 2005, Biogeography
of major bacterial groups in the Delaware Estuary, Limnol. Oceanogr., 50 (5), 1697-1706,
http://dx.doi.org/10.4319/lo.2005.50.5.1697
Kowalewski M., Kowalewska-Kalkowska H., 2011, Performance of operationally
calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay
and Szczecin Lagoon, Boreal Env. Res., 16 (Suppl. A), 27-41.
Kownacka J., Gromisz S., 2011, Semi-decade dynamic of the summer
phytoplankton community from the southern Baltic Proper, ICES Annual
Science Conferences, 19-23 September, Gdańsk, poster.
Langenheder S., Kisand V., Lindstrom E. S., Wikner J., Tranvik L. J., 2004,
Growth dynamics within bacterial communities in riverine and estuarine batch
cultures, Aquat. Microb. Ecol., 37 (2), 137-148,
http://dx.doi.org/10.3354/ame037137
Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., 1992, Phylogenetic
oligodeoxynucleotide probes for the major subclasses of Proteobacteria:
problems and solutions, Syst. Appl. Microbiol., 15 (4), 593-600,
http://dx.doi.org/10.1016/S0723-2020(11)80121-9
Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K.-H., 1996,
Application of a suite of 16S rRNA-specific oligonucleotide probes designed
to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the
natural environment, Microbiology, 142 (5), 1097-1106,
http://dx.doi.org/10.1099/13500872-142-5-1097
Martinez-Garcia M., Brazel D. M., Swan B.K., Arnosti C., Chain P. S.G., Reitenga
K.G., Xie G., Poulton N. J., Gomez M. L., Masland D. E.D., Thompson B.,
Bellows W.K., Ziervogel K., Lo C-C., Ahmed S., Gleasner C.D., Detter C. J.,
Stepanauskas R., 2012, Capturing single cell genomes of active polysaccharide
degraders: an unexpected contribution of Verrucomicrobia, PLoS ONE, 7 (4), e35314,
http://dx.doi.org/10.1371/journal.pone.0035314
Morris R.M., Rappe M. S., Connon S.A., Vergin K. L., Siebold W. A., Carlson
C.A., Giovannoni S. J., 2002, SAR11 clade dominates ocean surface
bacterioplankton communities, Nature, 420, 806-810,
http://dx.doi.org/10.1038/nature01240
Musat N., Werner U., Knittel K., Kolb S., Dodenhof T., van Beusekom J.E., de
Beer D., Dubilier N., Amann R., 2006, Microbial community structure of sandy
intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea, Syst.
Appl. Microbiol., 29 (4), 333-348,
http://dx.doi.org/10.1016/j.syapm.2005.12.006
Muyzer G., Teske A., WirsenC., Jannasch H., 1995, Phylogeneticrelationshipsof Thiomicrospira
species and their identification in deep-sea hydrothermal vent samplesby denaturinggradientgel
electrophoresisof16SrDNAfragments, Arch.Microbiol.,164 (3),165-172,
http://dx.doi.org/10.1007/BF02529967
Neef A., 1997, Anwendungder in situ Einzelzell-Identifizierung von Bakterienzur
Populationsanalyse in komplexen mikrobiellen Biozönosen, Ph. D. thesis, Tech. Univ., München.
OleninaI., Ha jduS., EdlerL., AnderssonA., Wasmund N., BuschS., Gobel J., Gromisz S.,
Huseby S., Huttunen M., Jaanus A., Kekkonen P., Ledaine I., ZiemkiewiczE.,2006, Biovolumes
andsize-classesofphytoplankton inthe BalticSea, HELCOMBaltic Sea Environ.Proc.,
106, 144 pp.
O'Sullivan L. A., FullerK. E., ThomasE. M., TurleyC. M., FryJ. C., Weightman A. J., 2004,
Distributionand culturabilityof the uncultivated 'AGG58cluster' of the Bacteroidetes phylum
in aquatic environments, FEMS Microbiol. Ecol., 47 (3), 359-370,
http://dx.doi.org/10.1016/S0168-6496(03)00300-3
Pernthaler A., Pernthaler J.,
AmmanR., 2004, Sensitivemulticolorfluorescencein
situ hybridizationfor the identification of environmental microorganisms, [in:]
Molecular microbial ecology manual,2nd edn., G. Kowalchuk,F. J. de Bruijn, I. M. Head,A. D.
L. Akkermans& J. vanElsas(eds.),KluwerAcad.Publ., Dordrecht, 711-126.
PinhassiJ., WindingA.,Binnerup S. J., Zweifel U. L.,RiemannB.,Hagström
Å., 2003, Spatial variabilityin bacterioplanktoncommunity compositionat the
Skagerrak-Kattegat Front, Mar. Ecol.-Prog. Ser., 255, 1-13,
http://dx.doi.org/10.3354/meps255001
PiwoszK.,SalcherM. M.,ZederM.,AmerykA.,PernthalerJ.,2013, Seasonal population
dynamicsand activityof freshwaterbacteria in brackish waters of the Gulf of Gdańsk,Limnol.
Oceanogr.,58 (3), 817-826.
PommierT.,CanbäckB.,RiemannL.,BoströmK. H.,SimuK.,LundbergP., TunlidA.,
Hagström Å., 2007, Global patterns of diversityand community structurein marine
bacterioplankton,Mol. Ecol., 16 (4),867-880,
http://dx.doi.org/10.1111/j.1365-294X.2006.03189.x
Pruesse E.,PepliesJ.,GlöcknerF. O.,2012,SINA: accuratehigh-throughput multiple
sequence alignmentof ribosomal RNAgenes, Bioinformatics, 28 (14), 1823-1829,
http://dx.doi.org/10.1093/bioinformatics/bts252
Ramette A., 2009, Quantitative community Fingerprinting methodsfor estimating the abundance of
operational taxonomicunit in natural microbial communities, Appl.Environ.Microb.,75 (8),2495-2505,
http://dx.doi.org/10.1128/AEM.02409-08
RiemannL., LeitetC., PommierT., Simu K., HolmfeldtK., Larsson U. Hagström
Å.,2008, Thenativebacterioplankton community inthecentralBalticSea is influenced
by freshwaterbacterialspecies,Appl.Environ.Microb.,74 (2),
503-515.
Rolff C., Elmgren R., 2000, Use of riverine organic matter in plankton food webs of
the Baltic Sea, Mar. Ecol.-Prog. Ser., 197, 81-101,
http://dx.doi.org/10.3354/meps197081
Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H., 1994, In situ probing
of Gram-positive bacteria with high DNA G+C content using 23S rRNAtargeted
oligonucleotides, Microbiology, 140, 2849-2858,
http://dx.doi.org/10.1099/00221287-140-10-2849
Rooney-Varga J.N., Giewat M.W., Savin M.C., Sood S., LeGresley M., Martin
J. L., 2005, Links between phytoplankton and bacterial community dynamics in
a coastal marine environment, Microb. Ecol., 49 (1), 163-175,
http://dx.doi.org/10.1007/s00248-003-1057-0
Selje N., Simon M., Brinkhoff T., 2004, A newly discovered Roseobacter cluster in
temperate and polar oceans, Nature, 427, 445-448,
http://dx.doi.org/10.1038/nature02272
Shyu C., Soule T., Bent S. J., Foster J.A., Forney L. J., 2007, MiCA: A web-based
tool for the analysis of microbial communities based on terminal-restriction
fragment length polymorphisms of 16S and 18S rRNA genes, Microb. Ecol.,
53 (4), 562-570,
http://dx.doi.org/10.1007/s00248-006-9106-0
Simon M., Azam F., 1989, Protein content and protein synthesis rates of planktonic
marine bacteria, Mar. Ecol.-Prog. Ser., 51, 201-213,
http://dx.doi.org/10.3354/meps051201
Simu K., Hagström Å., 2004, Oligotrophic bacterioplankton with a novel single-cell
life strategy, Appl. Environ. Microb., 70 (4), 2445-2451,
http://dx.doi.org/10.1128/AEM.70.4.2445-2451.2004
Šimek K., Pernthaler J., Weinbauer M. G., Hornak K., Dolan J.R., Nedoma J.,
Masin M., Amann R., 2001, Changes in bacterial community composition
and dynamics and viral mortality rates associated with enhanced flagellate
grazing in a mesoeutrophic reservoir, Appl. Environ. Microb., 67 (6), 2723-2733,
http://dx.doi.org/10.1128/AEM.67.6.2723-2733.2001
UNESCO, 1983, Chemical methods for use in marine environmental monitoring.
Manual and guides, Intergovern. Oceanogr. Comm., 12, 1-53.
Venables W.N., Ripley B.D., 2002, Modern applied statistics with S, Springer, New York,
http://dx.doi.org/10.1007/978-0-387-21706-2
Wagner-Döbler I., Biebl H., 2006, Environmental biology of the marine Roseobacter
lineage, Ann. Rev. Microbiol., 60, 255-280,
http://dx.doi.org/10.1146/annurev.micro.60.080805.142115
Wallner G., Amann R., Beisker W., 1993, Optimizing fluorescent in situ
hybridization with rRNA-targeted oligonucleotide probes for flow cytometric
identification of microorganisms, Cytometry, 14, 136-143.
Wang Q., Garrity G.M., Tiedje J.M., Cole J.R., 2007, Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxonomy,
Appl. Environ. Microb., 73 (16), 5261-5267,
http://dx.doi.org/10.1128/AEM.00062-07
Wielgat-Rychert M., Ameryk A., Jarosiewicz A., Kownacka J., Rychert K.,
Szymanek L., ZalewskiM., Agatova A., Lapina N., Torgunova N., 2013, Impact
of the inflow of Vistula river waters on the pelagic zone in the Gulf of Gdańsk,
Oceanologia, 55 (4), 859-886,
http://dx.doi.org/10.5697/oc.55-4.859
Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003,
Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea),
Estuar. Coast. Shelf Sci., 57 (1-2), 239-248,
http://dx.doi.org/10.1016/S0272-7714(02)00348-7
Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska
B., Kownacka J. M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997,
Phytoplankton primary production and its utilization by the pelagic community
in the coastal zone of the Gulf of Gdańsk, Mar. Ecol.-Prog. Ser., 148, 169-186,
http://dx.doi.org/10.3354/meps148169
Wright E. S., Yilmaz L. S., Noguera D.R., 2012, DECIPHER, a search-based
approach to chimera identification for 16S rRNA sequences, Appl. Environ.
Microb., 78 (3), 717-725,
http://dx.doi.org/10.1128/AEM.06516-11
Zhang Y., Jiao N., Cottrell M.T., Kirchman D. L., 2006, Contribution of major
bacterial groups to bacterial biomass production along a salinity gradient in
the South China Sea, Aquat. Microb. Ecol., 43 (3), 233-241,
http://dx.doi.org/10.3354/ame043233
Zhang Z., Schwartz S., Wagner L., Miller W., 2000, A greedy algorithm for aligning
DNA sequences, J. Comput. Biol., 7 (1-2), 203-214,
http://dx.doi.org/10.1089/10665270050081478
Zwart G., Crump B.C., Kamst-van Agterveld M.P., Hagen F., Han S-K., 2002,
Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences
from plankton of lakes and rivers, Aquat. Microb. Ecol., 28 (2), 141-155,
http://dx.doi.org/10.3354/ame028141
Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed
Oceanologia 2014, 56(4), 857-880
http://dx.doi.org/10.5697/oc.56-4.857
Szymon Uścinowicz1,*, Wojciech Jegliński1, Grażyna Miotk-Szpiganowicz1, Jarosław Nowak2, Urszula Pączek1, Piotr Przezdziecki1, Kazimierz Szefler2, Grzegorz Poręba3
1Polish Geological Institute - National Research Institute, Marine Geology Branch,
Kościerska 5, 80-328 Gdańsk, Poland;
e-mail: szymon.uscinowicz@pgi.gov.pl
*corresponding author
2Maritime Institute in Gdańsk,
Długi Targ 41/42, 80-830 Gdańsk, Poland
3Department of Radioisotopes, Institute of Physics CSE, Silesian University of Technology,
Krzywoustego 2, 44-100 Gliwice, Poland
keywords:
Sand extraction, dredging effects, seabed dynamics, regeneration, Southern Baltic
Received 9 August 2013, revised 25 March 2014, accepted 2 April 2014.
Abstract
Investigations of the geological structure and seabed dynamics as well as the morphological and sedimentological effects of sand extraction generated by different mining techniques were carried out in Polish waters of the Baltic Sea, NW of the Gulf of Gdańsk, at a water depth of 15-17 m. Three research cruises took place:just before, directly after and 11 months after dredging operations. Seismoacoustic profiling, a multibeam echosounder, a side-scan sonar, a 3 m vibro-corer and a box-corerwere used during the research cruises. The grain size distribution and 137Cscontent of the sand samples were determined. Marine shells were dated by the AMS14C technique and pollen analyses were carried out on samples of muddy sands lying below the marine sand. A 2 to 4.5 m thick layer of marine sands lies onthe boulder till and locally on late Pleistocene ice margin lake deposits. The 137Cs content indicates that the 0.4-0.8 m thick sand layer is mobile during storms.
After the dredging operations, four pits with diameters from 80 to 120 m,depths from 3 to 4.5 m and slopes with gradients up to 30-55° were measured. Several smaller irregularly shaped pits and double furrows 30-150 m in length and 0.3-0.5 m in depth were found. The sonar mosaic also shows a 50-100 m buffer zoneof fine sand around the pits which flowed over the dredger's side with water andsettled on the bottom.
During one year after the dredging operation the furrows generated by trailersuction hopper dredging as well as the fine sand cover around the pits disappearedcompletely. The four post-dredging pits left by stationary suction dredging wereshallower by 2-2.5 m, their diameters increased by 40-50 m, the gradient of the slopes was reduced by up to 5-10°, and the total volume was only about 3.5% smaller than directly after dredging.
References
Anon, 1992, Sprawozdanie z badań geologicznych zalegania piasków do zasilania plaż Półwyspu
Helskiego na obszarze Bałtykuw rejonieRozewie - Władysławowo, Report from geological
investigations of sand accumulations off the Rozewie - Władysławowo coast, Arch.Maritime Office,
Gdynia,12 pp.
Berglund B. E., 1979, Pollenanalysis,[in:]Palaeohydrologicalchanges inthe temperate zone
inthelast15000 years,B. E. Berglund(ed.),International Geological Correlation Program,
Pro ject 158B, Univ.Lund,133-167.
BoydS. E., CooperK. M., LimpennyD. S., KilbrideR., ReesH. L., Dearnaley M. P.,
Stevenson J., Meadows W. J., Morris C. D., 2004, Assessment ofthe re-habilitation of the seabed
following marine aggregate dredging,CEFAS Sci. Ser. Tech. Rep.No. 121, 154 pp.
Cieślak A.,2001, Zarysstrategii ochrony brzegów morskich,Inż.Mor. Geotech., 2, 65-73.
Cooper K. M., Eggleton J. D., Viye S. J., Vanstaen K., Smith R., Boyd S. E., Ware S., Morris C. D.,
Curtis M., Limpenny D. S., Meadows W. J., 2005, Assessment of the re-habilitation of the seabed
following marine aggregate dredging - part II, CEFAS Sci. Ser. Tech. Rep.No. 130, 82 pp.
ICES, 2001, Effectsofextractionofmarinesedimentsonthe marineecosystem, Coop. Res.
Rep.No. 247, Copenhagen, 80 pp.
Fagri K., Iversen J., 1975, Textbook of pollen analysis,Munksgaard, Copenhagen, 295 pp.
Gajewski L., Uścinowicz Sz., 1993, Hydrologic and sedimentologic aspects of mining aggregate from
the Słupsk Bank (BalticSea), Mar.Georesour. Geotec., 11 (3), 229-244,
http://dx.doi.org/10.1080/10641199309379920
Graca B.,BurskaD., Matuszewska K., 2004, Theimpactofdredging deeppits on organic matter
decompositioninsediments,WaterAirSoil Poll.,158 (1), 237-259,
http://dx.doi.org/10.1023/B:WATE.0000044853.63461.53
Herrmann C., Krause J., Tsoupikova N., Hansen K., 1999, Marinesediment extraction in the Baltic
Sea - Status Report, Baltic Sea Environ. Proc. No. 76, Helsinki Comm.,31 pp.
Humphreys B., Harrison D., ArthurtonR., LabanC., LethJ., Galtier L.,1999, Marine sand and
gravel in north-west Europe. A fact-finding and scoping study, CIRIA Pro j. Rep.No. 68, London, 64 pp.
Kubicki A., Manso F., Diesing M., 2007, Morphological evolution of gravel and sand extraction pits,
TromperWiek,BalticSea,Estuar.Coast. Shelf Sci., 71 (3-4), 647-656.
Łęczyński L.,2009, Morfolitodynamika przybrzeża Półwyspu Helskiego, Wyd. Uniw.
Gdańsk., Gdańsk, 117 pp.
Manso, F.,Radzevicius R.,Blazauskas N.,Balay A.,SchwarzerK.,2010, Nearshore
Dredginginthe BalticSea: conditionafter cessationof activities and assessment of
regeneration,J. Coast. Res., SI 51, 187-194.
Paszkiewicz Cz., 1983,Średnie polefalwiatrowych wBałtyku, Stud. Mater.
Oceanol.,40, 73-127.
Paszkiewicz Cz., 1994, Falowanie wiatrowe, [in:]Atlas Morza Bałtyckiego, A. Ma
jewski & Z. Lauer (eds.),IMGW,Warszawa,92-95.
Pikies R., Jurowska Z., 1992, Geological map of the BalticSea bottom,1:200 000, sheet Puck,
Państ. Inst. Geol., Warszawa.
SchwarzerK.,2010,Aggregateresourcesandextraction intheBalticSea: an
introduction, J. Coast.Res., 51 (SI), 165-172.
Uścinowicz Sz., 2003, The SouthernBaltic relative sea level changes, glacio-isostatic rebound
andshorelinedisplacement, Pol.Geol.Inst.Spec.Pap.,10, 79 pp.
Uścinowicz Sz.,2006, Arelativesea-levelcurveforPolishSouthernBalticSea, Quat. Int., 145-146, 86-105,
http://dx.doi.org/10.1016/j.quaint.2005.07.007
Seasonal changes in the biochemical components ofPseudonereis anomala (Polychaeta, Nereididae) from the Alexandria coast, Egypt
Oceanologia 2014, 56(4), 881-887
http://dx.doi.org/10.5697/oc.56-4.881
Mohamed Moussa Dorgham*, Rasha Hamdy, Huda Hassan Al-Rashidy, Manal Mohamed Atta
Department of Oceanography, Faculty of Science, Alexandria University,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author
keywords:
Lipids, fatty acids, amino acids, carbohydrate
Received 21 October 2013, revised 1 April 2014, accepted 29 April 2014.
Abstract
The biochemical composition (carbohydrates, protein, lipids, fatty acids and aminoacids) of the nereid polychaete Pseudonereis anomala Gravier 1901, from a shallowpart of the Alexandria coast (Egypt), was studied seasonally. The results revealedthat P. anomala had a lower water content, higher carbohydrates and protein, butapproximately similar or higher lipid levels than several other polychaetes.
Fatty acids appeared to be dominated by unsaturated acids, constitutingseasonally 49.6-81%, while saturated acids reached high amounts in winter andspring (23.3 and 38.3% respectively). C20:5n-3 was the major polyunsaturated fatty acid, accompanied by small amounts of C18:4n-3, C20:4n-6, C16:1n-7 andC20:1n-9. C18:0 dominated the saturated fatty acids for most of the year, exceptin autumn when C16:0 was the major one.
References
BlighE. G., DyerW. J., 1959,Arapidmethod oftotallipidextraction and
purification, Can.J. Biochem.Phys.,37 (8),911-917,
http://dx.doi.org/10.1139/o59-099
Çinar M. E., Altun C., 2007, Apreliminarystudyon populationcharacteristics of the
Lessepsian species, Pseudonereis anomala (Polychaeta:Nereididae), in IskenderunBay(Levantine
Sea,easternMediterranean), Turk.J.Zool., 31, 403-41.
ÇinarM. E.,ErgenZ.,2005, Lessepsianmigrantsexpandingtheirdistributional ranges;
Pseudonereisanomala (Polychaeta:Nereididae)in IzmirBay (Aegean Sea),J. Mar.Biol.
Assoc. UK,85 (2),313-321.
DinisM. T.,ReisJ.,ArrobasI.,1996,Evaluationofthefarmingpotentialfor
Solea senegalensisKaup, a new speciesfor aquaculture inthe Mediterranean area, [in:] Book of
abstracts. World Aquaculture, 29 January-2 February 1996, Bangkok, R. L. Cresswell (ed.),World
Aquacult. Soc., 107-109.
DorghamM. M., HamdyR., El-Rashidy H. H., Atta M. M., 2013, Firstrecordsof polychaetes new
to EgyptianMediterraneanwaters, Oceanologia,55 (1), 235-267,
http://dx.doi.org/10.5697/oc.55-1.235
ErgenZ., ÇinarM. E.,1997, Polychaetaof AntalyaBay(Mediterraneancoast of
Turkey),Israel J. Zool., 43, 229-241.
Gornall A. G., Bardawill C. J., David M. M., 1949, Determinationof serum proteins by means of the
biuret reaction, J. Biol. Chem.,177 (2), 751-766.
Huang J. H., Jiang S. G., Lin H. Z., Zhou F. L., Ye L., 2008, Effectsof dietary highly unsaturated
fatty acidsand astaxanthin on the fecundityand lipid content of pond reared Penaeus monodon
(Fabricius)broodstock, Aquac. Res., 39 (3), 240-251,
http://dx.doi.org/10.1111/j.1365-2109.2007.01868.x
JamesC. S.,1995,Analytical chemistryoffood,BlackieAcad.&Prof.Press,
178 pp.,
http://dx.doi.org/10.1007/978-1-4615-2165-5
MeunpolO., Meejing P.,Piyarativorakul S., 2005, Maturationdiet based on fatty acids content
for male Penaeusmonodon (Fabricius)broodstock, Aquac. Res.,
36 (12), 1216-1225,
http://dx.doi.org/10.1111/j.1365-2109.2005.01342.x
Nguyen B. T.,Koshio S.,
SakiyamaK., IshikawaM., YokoyamaS., AbdulKader
M. D.,2012,Effects ofpolychaeteextractsonreproductiveperformanceof
kuruma shrimp,MarsupenaeusjaponicusBate,PartII. Ovarianmaturation and tissue lipid
compositions, Aquaculture, 334-337, 65-72,
http://dx.doi.org/10.1016/j.aquaculture.2011.11.038
Osman I. H., 2007, Errantiate polychaetes of commercial interest in Suez Canal: an ecological and
biological study, M. Sc. Thes., Faculty of Sci., Suez Canal Univ., 188 pp.